920 resultados para kernel estimators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence at a fixed point if the density has a negative derivative. The same rate is obtained by a kernel estimator, but the limit distributions are different. If the density is both differentiable and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence and compare the limit distributors of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behavior of a kernel estimator with a larger bandwidth, in the case that the density is known to have more than one derivative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly, regression models are used when residuals are spatially correlated. Prominent examples include studies in environmental epidemiology to understand the chronic health effects of pollutants. I consider the effects of residual spatial structure on the bias and precision of regression coefficients, developing a simple framework in which to understand the key issues and derive informative analytic results. When the spatial residual is induced by an unmeasured confounder, regression models with spatial random effects and closely-related models such as kriging and penalized splines are biased, even when the residual variance components are known. Analytic and simulation results show how the bias depends on the spatial scales of the covariate and the residual; bias is reduced only when there is variation in the covariate at a scale smaller than the scale of the unmeasured confounding. I also discuss how the scales of the residual and the covariate affect efficiency and uncertainty estimation when the residuals can be considered independent of the covariate. In an application on the association between black carbon particulate matter air pollution and birth weight, controlling for large-scale spatial variation appears to reduce bias from unmeasured confounders, while increasing uncertainty in the estimated pollution effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel-lean combustion and exhaust gas recirculation (EGR) in spark ignition engines improve engine efficiency and reduce emission. However, flame initiation becomes more difficult in lean and dilute fuel-air mixture with traditional spark discharge. This research proposal will first provide an intensive review on topics related to spark ignition including properties of electrical discharge, flame kernel behavior and spark ignition modeling and simulation. Focus will be laid on electrical discharge pattern effect as it is showing prospect in extending ignition limits in SI engines. An experimental setup has been built with an optically accessible constant volume combustion vessel. Multiple imaging techniques as well as spectroscopy will be applied. By varying spark discharge patterns, preliminary test results are available on consequent flame kernel development. In addition to experimental investigation of spark plasma and flame kernel development, spark ignition modeling with detailed description of plasma channel is also proposed for this study.