931 resultados para k-Means algorithm
Resumo:
The aim of the present study was to assess the effects of game timeouts on basketball teams? offensive and defensive performances according to momentary differences in score and game period. The sample consisted of 144 timeouts registered during 18 basketball games randomly selected from the 2007 European Basketball Championship (Spain). For each timeout, five ball possessions were registered before (n?493) and after the timeout (n?475). The offensive and defensive efficiencies were registered across the first 35 min and last 5 min of games. A k-means cluster analysis classified the timeouts according to momentary score status as follows: losing ( ?10 to ?3 points), balanced ( ?2 to 3 points), and winning (4 to 10 points). Repeated-measures analysis of variance identified statistically significant main effects between pre and post timeout offensive and defensive values. Chi-square analysis of game period identified a higher percentage of timeouts called during the last 5 min of a game compared with the first 35 min (64.999.1% vs. 35.1910.3%; x ?5.4, PB0.05). Results showed higher post timeout offensive and defensive performances. No other effect or interaction was found for defensive performances. Offensive performances were better in the last 5 min of games, with the least differences when in balanced situations and greater differences when in winning situations. Results also showed one interaction between timeouts and momentary differences in score, with increased values when in losing and balanced situations but decreased values when in winning situations. Overall, the results suggest that coaches should examine offensive and defensive performances according to game period and differences in score when considering whether to call a timeout.
Resumo:
Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images.
Resumo:
Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.
Resumo:
We use quantitative X-ray diffraction to determine the mineralogy of late Quaternary marine sediments from the West and East Greenland shelves offshore from early Tertiary basalt outcrops. Despite the similar basalt outcrop area (60 000-70 000 km**2), there are significant differences between East and West Greenland sediments in the fraction of minerals (e.g. pyroxene) sourced from the basalt outcrops. We demonstrate the differences in the mineralogy between East and West Greenland marine sediments on three scales: (1) modern day, (2) late Quaternary inputs and (3) detailed down-core variations in 10 cores from the two margins. On the East Greenland Shelf (EGS), late Quaternary samples have an average quartz weight per cent of 6.2 ± 2.3 versus 12.8 ± 3.9 from the West Greenland Shelf (WGS), and 12.02 ± 4.8 versus 1.9 ± 2.3 wt% for pyroxene. K-means clustering indicated only 9% of the samples did not fit a simple EGS vs. WGS dichotomy. Sediments from the EGS and WGS are also isotopically distinct, with the EGS having higher eNd (-18 to 4) than those from the WGS (eNd = -25 to -35). We attribute the striking dichotomy in sediment composition to fundamentally different long-term Quaternary styles of glaciation on the two basalt outcrops.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Coarse-resolution thematic maps derived from remotely sensed data and implemented in GIS play an important role in coastal and marine conservation, research and management. Here, we describe an approach for fine-resolution mapping of land-cover types using aerial photography and ancillary GIs and ground data in a large (100 x 35 km) subtropical estuarine system (Moreton Bay, Queensland, Australia). We have developed and implemented a classification scheme representing 24 coastal (subtidal, intertidal. mangrove, supratidal and terrestrial) cover types relevant to the ecology of estuarine animals, nekton and shorebirds. The accuracy of classifications of the intertidal and subtidal cover types, as indicated by the agreement between the mapped (predicted) and reference (ground) data, was 77-88%, depending on the zone and level of generalization required. The variability and spatial distribution of habitat mosaics (landscape types) across the mapped environment were assessed using K-means clustering and validated with Classification and Regression Tree models. Seven broad landscape types could be distinguished and ways of incorporating the information on landscape composition into site-specific conservation and field research are discussed. This research illustrates the importance and potential applications of fine-resolution mapping for conservation and management of estuarine habitats and their terrestrial and aquatic wildlife. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: Pain is defined as both a sensory and an emotional experience. Acute postoperative tooth extraction pain is assessed and treated as a physiological (sensory) pain while chronic pain is a biopsychosocial problem. The purpose of this study was to assess whether psychological and social changes Occur in the acute pain state. Methods: A biopsychosocial pain questionnaire was completed by 438 subjects (165 males, 273 females) with acute postoperative pain at 24 hours following the surgical extraction of teeth and compared with 273 subjects (78 males, 195 females) with chronic orofacial pain. Statistical methods used a k-means cluster analysis. Results: Three clusters were identified in the acute pain group: 'unaffected', 'disabled' and 'depressed, anxious and disabled'. Psychosocial effects showed 24.8 per cent feeling 'distress/suffering' and 15.1 per cent 'sad and depressed'. Females reported higher pain intensity and more distress, depression and inadequate medication for pain relief (p
Resumo:
This paper describes the application of a new technique, rough clustering, to the problem of market segmentation. Rough clustering produces different solutions to k-means analysis because of the possibility of multiple cluster membership of objects. Traditional clustering methods generate extensional descriptions of groups, that show which objects are members of each cluster. Clustering techniques based on rough sets theory generate intensional descriptions, which outline the main characteristics of each cluster. In this study, a rough cluster analysis was conducted on a sample of 437 responses from a larger study of the relationship between shopping orientation (the general predisposition of consumers toward the act of shopping) and intention to purchase products via the Internet. The cluster analysis was based on five measures of shopping orientation: enjoyment, personalization, convenience, loyalty, and price. The rough clusters obtained provide interpretations of different shopping orientations present in the data without the restriction of attempting to fit each object into only one segment. Such descriptions can be an aid to marketers attempting to identify potential segments of consumers.
Resumo:
An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.
Resumo:
Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods.
Resumo:
We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HM-SVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully-annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences. © 2008. Licensed under the Creative Commons.
Resumo:
Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.
Resumo:
A likviditás mérésére többféle mutató terjedt el, amelyek a likviditás jelenségét különböző szempontok alapján számszerűsítik. A cikk a szakirodalom által javasolt, különféle likviditási mutatókat elemzi sokdimenziós statisztikai módszerekkel: főkomponens-elemzés segítségével keresünk olyan faktorokat, amelyek legjobban tömörítik a likviditási jellemzőket, majd megnézzük, hogy az egyes mutatók milyen mértékben mozognak együtt a faktorokkal, illetve a korrelációk alapján klaszterezési eljárással keresünk hasonló tulajdonságokkal bíró csoportokat. Arra keressük a választ, hogy a rendelkezésünkre álló minta elemzésével kialakított változócsoportok egybeesnek-e a likviditás egyes aspektusaihoz kapcsolt mutatókkal, valamint meghatározhatók-e olyan összetett likviditási mérőszámok, amelyeknek a segítségével a likviditás jelensége több dimenzióban mérhető. / === / Liquidity is measured from different aspects (e.g. tightness, depth, and resiliency) by different ratios. We studied the co-movements and the clustering of different liquidity measures on a sample of the Swiss stock market. We performed a PCA to obtain the main factors that explain the cross-sectional variability of liquidity measures, and we used the k-means clustering methodology to defi ne groups of liquidity measures. Based on our explorative data analysis, we formed clusters of liquidity measures, and we compared the resulting groups with the expectations and intuition. Our modelling methodology provides a framework to analyze the correlation between the different aspects of liquidity as well as a means to defi ne complex liquidity measures.
Resumo:
This dissertation reports the results of a study that examined differences between genders in a sample of adolescents from a residential substance abuse treatment facility. The sample included 72 males and 65 females, ages 12 through 17. The data were archival, having been originally collected for a study of elopement from treatment. The current study included 23 variables. The variables were from multiple dimensions, including socioeconomic, legal, school, family, substance abuse, psychological, social support, and treatment histories. Collectively, they provided information about problem behaviors and psychosocial problems that are correlates of adolescent substance abuse. The study hypothesized that these problem behaviors and psychosocial problems exist in different patterns and combinations between genders.^ Further, it expected that these patterns and combinations would constitute profiles important for treatment. K-means cluster analysis identified differential profiles between genders in all three areas: problem behaviors, psychosocial problems, and treatment profiles. In the dimension of problem behaviors, the predominantly female group was characterized as suicidal and destructive, while the predominantly male group was identified as aggressive and low achieving. In the dimension of psychosocial problems, the predominantly female group was characterized as abused depressives, while the male group was identified as asocial, low problem severity. A third group, neither predominantly female or male, was characterized as social, high problem severity. When these dimensions were combined to form treatment profiles, the predominantly female group was characterized as abused, self-harmful, and social, and the male group was identified as aggressive, destructive, low achieving, and asocial. Finally, logistic regression and discriminant analysis were used to determine whether a history of sexual and physical abuse impacted problem behavior differentially between genders. Sexual abuse had a substantially greater influence in producing self-mutilating and suicidal behavior among females than among males. Additionally, a model including sexual abuse, physical abuse, low family support, and low support from friends showed a moderate capacity to predict unusual harmful behavior (fire-starting and cruelty to animals) among males. Implications for social work practice, social work research, and systems science are discussed. ^
Resumo:
The purpose of the study was to examine the relationship between teacher beliefs and actual classroom practice in early literacy instruction. Conjoint analysis was used to measure teachers' beliefs on four early literacy factors—phonological awareness, print awareness, graphophonic awareness, and structural awareness. A collective case study format was then used to measure the correspondence of teachers' beliefs with their actual classroom practice. ^ Ninety Project READS participants were given twelve cards in an orthogonal experimental design describing students that either met or did not meet criteria on the four early literacy factors. Conjoint measurements of whether the student is an efficient reader were taken. These measurements provided relative importance scores for each respondent. Based on the relative important scores, four teachers were chosen to participate in a collective case study. ^ The conjoint results enabled the clustering of teachers into four distinct groups, each aligned with one of the four early literacy factors. K-means cluster analysis of the relative importance measurements showed commonalities among the ninety respondents' beliefs. The collective case study results were mixed. Implications for researchers and practitioners include the use of conjoint analysis in measuring teacher beliefs on the four early literacy factors. Further, the understanding of teacher preferences on these beliefs may assist in the development of curriculum design and therefore increase educational effectiveness. Finally, comparisons between teachers' beliefs on the four early literacy factors and actual instructional practices may facilitate teacher self-reflection thus encouraging positive teacher change. ^