972 resultados para interleukin 1 receptor 2
Resumo:
Leishmania are parasites that survive within macrophages by mechanism(s) not entirely known. Depression of cellular immunity and diminished production of interleukin 1β (IL-1β) and tumor necrosis factor α are potential ways by which the parasite survives within macrophages. We examined the mechanism(s) by which lipophosphoglycan (LPG), a major glycolipid of Leishmania, perturbs cytokine gene expression. LPG treatment of THP-1 monocytes suppressed endotoxin induction of IL-1β steady-state mRNA by greater than 90%, while having no effect on the expression of a control gene. The addition of LPG 2 h before or 2 h after endotoxin challenge significantly suppressed steady-state IL-1β mRNA by 90% and 70%, respectively. LPG also inhibited tumor necrosis factor α and Staphylococcus induction of IL-1β gene expression. The inhibitory effect of LPG is agonist-specific because LPG did not suppress the induction of IL-1β mRNA by phorbol 12-myristate 13-acetate. A unique DNA sequence located within the −310 to −57 nucleotide region of the IL-1β promoter was found to mediate LPG’s inhibitory activity. The requirement for the −310 to −57 promoter gene sequence for LPG’s effect is demonstrated by the abrogation of LPG’s inhibitory activity by truncation or deletion of the −310 to −57 promoter gene sequence. Furthermore, the minimal IL-1β promoter (positions −310 to +15) mediated LPG’s inhibitory activity with dose and kinetic profiles that were similar to LPG’s suppression of steady-state IL-1β mRNA. These findings delineated a promoter gene sequence that responds to LPG to act as a “gene silencer,” a function, to our knowledge, not previously described. LPG’s inhibitory activity for several mediators of inflammation and the persistence of significant inhibitory activity 2 h after endotoxin challenge suggest that LPG has therapeutic potential and may be exploited for therapy of sepsis, acute respiratory distress syndrome, and autoimmune diseases.
Resumo:
Fibroblast growth factor (FGF) 1 and FGF-2 are prototypic members of the FGF family, which to date comprises at least 18 members. Surprisingly, even though FGF-1 and FGF-2 share more than 80% sequence similarity and an identical structural fold, these two growth factors are biologically very different. FGF-1 and FGF-2 differ in their ability to bind isoforms of the FGF receptor family as well as the heparin-like glycosaminoglycan (HLGAG) component of proteoglycans on the cell surface to initiate signaling in different cell types. Herein, we provide evidence for one mechanism by which these two proteins could differ biologically. Previously, it has been noted that FGF-1 and FGF-2 can oligomerize in the presence of HLGAGs. Therefore, we investigated whether FGF-1 and FGF-2 oligomerize by the same mechanism or by a different one. Through a combination of matrix-assisted laser desorption ionization mass spectrometry and chemical crosslinking, we show here that, under identical conditions, FGF-1 and FGF-2 differ in the degree and kind of oligomerization. Furthermore, an extensive analysis of FGF-1 and FGF-2 uncomplexed and HLGAG complexed crystal structures enables us to readily explain why FGF-2 forms sequential oligomers whereas FGF-1 forms only dimers. FGF-2, which possesses an interface capable of protein association, forms a translationally related oligomer, whereas FGF-1, which does not have this interface, forms only a symmetrically related dimer. Taken together, these data show that FGF-1 and FGF-2, despite their sequence homology, differ in their mechanism of oligomerization.
Resumo:
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.
Resumo:
The reduction in levels of the potentially toxic amyloid-β peptide (Aβ) has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the expression and processing of the Aβ precursor protein (βAPP). Earlier reports from our laboratory have shown that a novel cholinesterase inhibitor, phenserine, reduces βAPP levels in vivo. Herein, we studied the mechanism of phenserine's actions to define the regulatory elements in βAPP processing. Phenserine treatment resulted in decreased secretion of soluble βAPP and Aβ into the conditioned media of human neuroblastoma cells without cellular toxicity. The regulation of βAPP protein expression by phenserine was posttranscriptional as it suppressed βAPP protein expression without altering βAPP mRNA levels. However, phenserine's action was neither mediated through classical receptor signaling pathways, involving extracellular signal-regulated kinase or phosphatidylinositol 3-kinase activation, nor was it associated with the anticholinesterase activity of the drug. Furthermore, phenserine reduced expression of a chloramphenicol acetyltransferase reporter fused to the 5′-mRNA leader sequence of βAPP without altering expression of a control chloramphenicol acetyltransferase reporter. These studies suggest that phenserine reduces Aβ levels by regulating βAPP translation via the recently described iron regulatory element in the 5′-untranslated region of βAPP mRNA, which has been shown previously to be up-regulated in the presence of interleukin-1. This study identifies an approach for the regulation of βAPP expression that can result in a substantial reduction in the level of Aβ.
Resumo:
Nontypeable Hemophilus influenzae (NTHi) is an important human pathogen in both children and adults. In children, it causes otitis media, the most common childhood infection and the leading cause of conductive hearing loss in the United States. In adults, it causes lower respiratory tract infections in the setting of chronic obstructive pulmonary disease, the fourth leading cause of death in the United States. The molecular mechanisms underlying the pathogenesis of NTHi-induced infections remain undefined, but they may involve activation of NF-κB, a transcriptional activator of multiple host defense genes involved in immune and inflammatory responses. Here, we show that NTHi strongly activates NF-κB in human epithelial cells via two distinct signaling pathways, NF-κB translocation-dependent and -independent pathways. The NF-κB translocation-dependent pathway involves activation of NF-κB inducing kinase (NIK)–IKKα/β complex leading to IκBα phosphorylation and degradation, whereas the NF-κB translocation-independent pathway involves activation of MKK3/6–p38 mitogen-activated protein (MAP) kinase pathway. Bifurcation of NTHi-induced NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase pathways may occur at transforming growth factor-β activated kinase 1 (TAK1). Furthermore, we show that toll-like receptor 2 (TLR2) is required for NTHi-induced NF-κB activation. In addition, several key inflammatory mediators including IL-1β, IL-8, and tumor necrosis factor-α are up-regulated by NTHi. Finally, P6, a 16-kDa lipoprotein highly conserved in the outer membrane of all NTHi and H. influenzae type b strains, appears to also activate NF-κB via similar signaling pathways. Taken together, our results demonstrate that NTHi activates NF-κB via TLR2–TAK1-dependent NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase signaling pathways. These studies may bring new insights into molecular pathogenesis of NTHi-induced infections and open up new therapeutic targets for these diseases.
Resumo:
Although proteases related to the interleukin 1 beta-converting enzyme (ICE) are known to be essential for apoptotic execution, the number of enzymes involved, their substrate specificities, and their specific roles in the characteristic biochemical and morphological changes of apoptosis are currently unknown. These questions were addressed using cloned recombinant ICE-related proteases (IRPs) and a cell-free model system for apoptosis (S/M extracts). First, we compared the substrate specificities of two recombinant human IRPs, CPP32 and Mch2 alpha. Both enzymes cleaved poly-(ADP-ribose) polymerase, albeit with different efficiencies. Mch2 alpha also cleaved recombinant and nuclear lamin A at a conserved VEID decreases NG sequence located in the middle of the coiled-coil rod domain, producing a fragment that was indistinguishable from the lamin A fragment observed in S/M extracts and in apoptotic cells. In contrast, CPP32 did not cleave lamin A. The cleavage of lamin A by Mch2 alpha and by S/M extracts was inhibited by millimolar concentrations of Zn2+, which had a minimal effect on cleavage of poly (ADP-ribose) polymerase by CPP32 and by S/M extracts. We also found that N-(acetyltyrosinylvalinyl-N epsilon-biotinyllysyl)aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone, which derivatizes the larger subunit of active ICE, can affinity label up to five active IRPs in S/M extracts. Together, these observations indicate that the processing of nuclear proteins in apoptosis involves multiple IRPs having distinct preferences for their apoptosis-associated substrates.
Resumo:
The interleukin 7 receptor (IL-7R) plays a crucial role in early B- and T-cell development. It consists of a unique a chain and a common gamma chain [IL-2 receptor gamma chain (IL-2Rgamma)]. Gene inactivation of IL-7, IL-7R, and IL-2Rgamma resulted in severe impairment of B and T lymphopoiesis in mice. In addition, IL-2Rgamma-deficient mice lack gammadelta T cells in the skin and have the impaired development of natural killer (NK) cells and intraepithelial lymphocytes. To explore the role of IL-7/IL-7R system in gammadelta T- and NK-cell development, we have generated and analyzed IL-7R-deficient mice. gammadelta T cells were absent from skin, gut, liver, and spleen in the deficient mice. In contrast, alphabeta T and B cells were detected in reduced, but certain, numbers, and NK cells developed normally. The gammadelta T-cell development in fetal and adult thymus was also completely blocked. These results clearly demonstrate that the signal from IL-7R is indispensable for gammadelta T-cell development in both thymic and extrathymic pathways. On the contrary, it is suggested that NK-cell development requires cytokine(s) other than IL-7.
Resumo:
Because of their known myelopoietic activities, both interleukin (IL)-3 and IL-1 are often used in combination with other cytokines for in vitro (ex vivo) expansion of stem cells. We have investigated the effects of IL-3 and IL-1 on in vitro expansion of murine hematopoietic stem cells with long-term engraftment capabilities, using a highly purified progenitor population. Lineage-negative, Ly-6A/E+, c-kit+ bone marrow cells from male mice were cultured in suspension in the presence of stem cell factor, IL-6, IL-11, and erythropoietin with or without IL-3 or IL-1. Kinetic studies revealed an exponential increase in total nucleated cells and about 10-fold enhancement of nucleated cells by IL-3 during the initial 10 days. Addition of IL-3 hastened the development but significantly suppressed the peak production of colony-forming cells. Addition of IL-1 also significantly suppressed the numbers of colony-forming cells. The reconstituting ability of the cultured cells was tested by transplanting the expanded male cells into lethally irradiated female mice. The cells expanded from enriched cells in the absence of IL-3 and IL-1 revealed engraftment at 2, 4, 5, and 6 months, whereas addition of IL-3 or IL-1 to the cultures significantly reduced the reconstituting ability. The results suggest that these cytokines may have a modulatory role on the self-renewal of stem cells and further indicate that the use of IL-3 and IL-1 for in vitro expansion of human stem cells needs to be cautiously evaluated.
Resumo:
Complement receptor 1 (CR1, CD35) and complement receptor 2 (CR2, CD21) have been implicated as regulators of B-cell activation. We explored the role of these receptors in the development of humoral immunity by generating CR1- and CR2-deficient mice using gene-targeting techniques. These mice have normal basal levels of IgM and of IgG isotypes. B- and T-cell development are overtly normal. Nevertheless, B-cell responses to low and high doses of a T-cell-dependent antigen are impaired with decreased titers of antigen-specific IgM and IgG isotypes. This defect is not complete because there is still partial activation of B lymphocytes during the primary immune response, with generation of splenic germinal centers and a detectable, although reduced, secondary antibody response. These data suggest that certain T-dependent antigens manifest an absolute dependence on complement receptors for the initiation of a normally robust immune response.
Resumo:
Inducible nitric oxide synthase (iNOS; EC 1.14.13.39) is expressed in rat glomerular mesangial cells upon exposure to the inflammatory cytokine interleukin 1 beta (IL-1 beta). We have reported that nanomolar concentrations of dexamethasone suppress IL-1 beta-induced iNOS protein expression and production of nitrite, the stable end product of NO formation, without affecting IL-1 beta-triggered increase in iNOS mRNA levels. We now have studied the mechanisms by which dexamethasone suppresses IL-1 beta-stimulated iNOS expression in mesangial cells. Surprisingly, nuclear run-on transcription experiments demonstrate that dexamethasone markedly attenuates IL-1 beta-induced iNOS gene transcription. However, this is counteracted by a prolongation of the half-life of iNOS mRNA from 1 h to 2.5 h by dexamethasone. Moreover, dexamethasone drastically reduces the amount of iNOS protein by reduction of iNOS mRNA translation and increased degradation of iNOS protein. These results indicate that glucocorticoids act at multiple levels to regulate iNOS expression, thus providing important insights into the treatment of inflammatory diseases.
Resumo:
Substance P (SP) is a neuropeptide that mediates multiple physiological responses including transmission of painful stimuli and inflammation via an interaction with a receptor of known primary sequence. To identify the regions of the SP receptor, also termed the NK-1 receptor, involved in peptide recognition, we are using analogues of SP containing the photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa). In the present study, we used radioiodinated Bpa8-SP to covalently label with high efficiency the rat SP receptor expressed in a transfected mammalian cell line. To identify the amino acid residue that serves as the site of covalent attachment, a membrane preparation of labeled receptor was subjected to partial enzymatic cleavage by trypsin. A major digestion product of 22 kDa was identified. Upon reduction with 2-mercaptoethanol the mass of this product decreased to 14 kDa. The 22-kDa tryptic fragment was purified in excellent yield by preparative SDS/PAGE under nonreducing conditions. Subcleavage with Staphylococcus aureus V8 protease and endoproteinase ArgC yielded fragments of 8.2 and 9.0 kDa, respectively. Upon reductive cleavage, the V8 protease fragment decreased to 3.0 kDa while the endoproteinase ArgC fragment decreased to 3.2 kDa. Taking into consideration enzyme specificity, molecular size, determination of the presence or absence of N-glycosylation sites, and recognition by antibodies to specific sequences of the SP receptor, the V8 protease fragment is Thr-173 to Glu-183, while the endoproteinase ArgC fragment is Val-178 to Arg-190. These two fragments share the common sequence Val-Val-Cys-Met-Ile-Glu (residues 178-183). The site of covalent attachment of radioiodinated Bpa8-SP is thus restricted to a residue within this overlap sequence. The data presented here also establish that the cysteine residue in this sequence Cys-180, which is positioned in the middle of the second extracellular loop, participates in a disulfide bond that links the first and second extracellular loops of the receptor.
Resumo:
Interleukins 4 (IL-4) and 13 (IL-13) have been found previously to share receptor components on some cells, as revealed by receptor cross-competition studies. In the present study, the cloning is described of murine NR4, a previously unrecognized receptor identified on the basis of sequence similarity with members of the hemopoietin receptor family. mRNA encoding NR4 was found in a wide range of murine cells and tissues. By using transient expression in COS-7 cells, NR4 was found to encode the IL-13 receptor alpha chain, a low-affinity receptor capable of binding IL-13 but not IL-4 or interleukins 2, -7, -9, or -15. Stable expression of the IL-13 receptor alpha chain (NR4) in CTLL-2 cells resulted in the generation of high-affinity IL-13 receptors capable of transducing a proliferative signal in response to IL-13 and, moreover, led to competitive cross-reactivity in the binding of IL-4 and IL-13. These results suggest that the IL-13 receptor alpha chain (NR4) is the primary binding subunit of the IL-13 receptor and may also be a component of IL-4 receptors.
Resumo:
Mouse CD38 has been implicated in the regulation of both B-cell proliferation and protection of B cells from irradiation-induced apoptosis. CD38 ligation on B cells by CS/2, an anti-mouse CD38 monoclonal antibody, induced proliferation, IgM secretion, and tyrosine phosphorylation of Bruton tyrosine kinase in B cells from wild-type mice. B cells from X chromosome-linked immunodeficient mice did not respond at all to anti-CD38 antibody, although CD38 expression on these B cells was comparable to that on wild-type B cells. We infer from these results that Bruton tyrosine kinase activation is involved in B-cell triggering after cross-linkage of CD38. Analysis of the synergistic effects of various cytokines with CD38 ligation on B-cell activation revealed that interleukin 5 (IL-5) showed the most potent effect on B-cell proliferation, Blimp1 gene expression, and IgM production. These synergistic effects were not seen with B cells from X chromosome-linked immunodeficient mice. Flow cytometry analysis revealed that CD38 ligation increased surface expression of the IL-5-receptor alpha chain on B cells. These data indicate that CD38 ligation increases IL-5 receptor alpha expression and synergizes with IL-5 to enhance Blimp1 expression and IgM synthesis.
Resumo:
Resting epidermal keratinocytes contain large amounts of interleukin 1 (IL-1), but the function of this cytokine in the skin remains unclear. To further define the role of IL-1 in cutaneous biology, we have generated two lines of transgenic mice (TgIL-1.1 and TgIL-1.2) which overexpress IL-1 alpha in basal keratinocytes. There was high-level tissue-specific expression of transgene mRNA and protein and large quantities of IL-1 alpha were liberated into the circulation from epidermis in both lines. TgIL-1.1 mice, which had the highest level of transgene expression, developed a spontaneous skin disease characterized by hair loss, scaling, and focal inflammatory skin lesions. Histologically, nonlesional skin of these animals was characterized by hyperkeratosis and a dermal mononuclear cell infiltrate of macrophage/monocyte lineage. Inflammatory lesions were marked by a mixed cellular infiltrate, acanthosis, and, in some cases, parakeratosis. These findings confirm the concept of IL-1 as a primary cytokine, release of which is able to initiate and localize an inflammatory reaction. Furthermore, these mice provide the first definitive evidence that inflammatory mediators can be released from the epidermis to enter the systemic circulation and thereby influence, in a paracrine or endocrine fashion, a wide variety of other cell types.
Resumo:
BACKGROUND The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. METHODS Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). RESULTS After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p < 0.0001), fat droplet formation (p < 0.0001), and glycosaminoglycan content (p = 0.0095 vs. Tie2- NPC), respectively. Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies; however, the colonies formed from Tie2+ cells were spheroid in shape, whereas those from Tie2- cells were spread and fibroblastic. In addition, Tie2+ cells formed more colonies in 3D culture (p = 0.011) than Tie2- cells. During expansion, a fast decline in the fraction of Tie2+ cells was observed (p < 0.0001), which was partially reversed by low oxygen concentration (p = 0.0068) and supplementation of the culture with fibroblast growth factor 2 (FGF2) (p < 0.0001). CONCLUSIONS Our results showed that the bovine nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.