907 resultados para interleukin 1 gene
Resumo:
Three interferon regulatory factor (IRF) genes, CaIRF-1, CaIRF-2 and CaIRF-7, and their promoters of snakehead (Channa argus) were cloned and characterized. The CaIRF-1 gene consists of ten exons, spans 4.3 kb and encodes a putative peptide of 299 aa. The CaIRF-2 gene consists of nine exons, spans 8 kb and encodes a putative peptide of 328 aa. The gene organizations of CaIRF-1 and CaIRF-2 are very similar to that of human IRF-1 and IRF-2 except more compact. Comparison of exon-intron organization of the two genes indicated a common evolutionary structure, notably within the exons encoding the DNA binding domain (DBD) of the two factors. The CaIRF-7 gene spans 4.1 kb and encodes a putative peptide of 437 aa. However, the gene organization of CaIRF-7 consisting of ten exons is different to human IRF-7a gene which has an intron in 5' UTR. Three CaIRFs share homology in N-terminal encompassing the DBD that contains a characteristic repeat of tryptophan residues. The promoters of CaIRF-1 and CaIRF-2 genes contain the conserved sites for NF-kappa B and Sp1. The gamma-IFN activation sites (GAS) were found in the promoters of CaIRF-1 and CaIRF-7. The promoter of CaIRF-7 contains conserved interferon stimulating response element (ISRE) which is characteristic of IFN-induced gene promoter, and suggests that there also exist intracellular amplifier circuit in fish IFN signal pathway. Moreover, the element GAAANN oriented in both directions is repeated in CaIRF promoter regions, which confers to further inducibility by IFN. The constitutive expression of CaIRF genes were found to increase obviously in response to induction by the known IFN-inducer poly I:C. (c) 2008 Published by Elsevier Ltd.
Resumo:
The genes of IRF-1 and IRF-7 have been cloned from the mandarin fish (Siniperca chuatsi). The IRF-1 gene has 4919 nucleotides (nt) and contains 10exons and 9introns, with an open reading frame (ORF) of 903 ntencoding301 aa. The IRF-7 gene has 6057 nt and also contains 10exons and 9introns, with an ORF of 1308 nt encoding 436 aa. The IRF-1 and IRF-7 genes have only one copy each in the genome. The transcription of IRF-1 and IRF-7 in different organs was analyzed by real-time PCR, and both molecules were constitutively expressed. The IRF-I and IRF-7 mRNAs were abundant in gill, spleen, kidney and pronephros. The temporal transcriptional changes for IRF-1, IRF-7 and Mx were investigated within 48 h after poly I: C stimulation in liver, gill, spleen and pronephros. An increased transcription was detected for IRF-1 and IRF-7 12 h post-stimulation, being earlier than the transcription of Mx protein; however, IRF-1 and IRF-7 transcription decreased while the Mx protein was stable at 48 h post-stimulation. (c) 2007 Published by Elsevier B.V.
Resumo:
The interleukin 1beta (IL-1beta) cDNA was cloned from the red seabream (Pagrus major) by homology cloning strategy. A cDNA fragment was amplified by PCR using two degenerated primers, which were designed according to the conserved regions of other known IL-1beta sequences, and elongated by 3' ends and 5' ends RACE PCR to get the full length coding sequence of red seabream IL-1beta (RS IL-1beta). The sequence contained 1252 nucleotides that included a 5' untranslated region (UTR) of 84 bp, a 3' UTR of 410 bp and an open reading frame (ORF) of 759 nucleotides which could be translated into a putative peptide of 253 amino acids with molecular weight of 28.6 kD and putative isoelectric point pI of 5.29. The deduced peptide contained two potential N-glycosylation sites and an identifiable IL1 family signature, but lacked the signal peptide and the clear ICE cut site, which were common in other nonmammalian IL-1beta genes. The RS IL-1beta had the highest homology with piscine IL-1beta according to phylogenetic tree analysis. The transcript expression was detected in blood, brain, gill, heart, head kidney, kidney, liver, muscle and spleen in the pathogen challenged and healthy red seabream by RTPCR. Results showed that the RS IL-1beta mRNA was constitutively expressed in most of the tissues both in stimulated and un-stimulated fish, and the expression could be enhanced by pathogen challenging.
Resumo:
SNARE蛋白家族是所有真核细胞胞吐及分泌作用中的关键因子,由其介导的运输囊泡膜与靶膜的锚靠、融合为胞内蛋白的运出提供了一条重要途径。体外试验表明,Syntaxin6-Syntaxin7-Vti1b,SNAP-23-Syntaxin4等SNARE核心蛋白之间精确的相互作用是哺乳动物巨噬细胞肿瘤坏死因子α (TNF-α)运输和分泌的必备条件,在机体非特异性免疫应答反应过程中起重要作用。 本研究受上述启示,旨在揭示SNARE蛋白在海洋鱼类免疫细胞内重要细胞因子白细胞介素1β (IL-1β)的分泌过程中的作用。参照Percoll密度梯度离心技术,从鲈鱼头肾组织分离纯化巨噬细胞进行稳定培养;利用RT-PCR方法克隆出鲈鱼t-SNARE蛋白SNAP-23和Syntaxin3的部分cDNA序列,再结合先前克隆的VAMP2和已知的鲈鱼IL-1β,TNF-α和IL-8的基因序列,设计特异性引物。利用Real-time PCR技术在mRNA水平上精确测定鲈鱼巨噬细胞中上述6种基因在革兰氏阴性菌脂多糖(LPS)分子刺激下的表达变化,发现SNAP-23基因与三种细胞因子基因的表达正相关;通过免疫印迹检测SNAP-23蛋白表达变化,利用酶联免疫吸附试验(ELISA)检测IL-1β的分泌水平,在蛋白水平上验证了SNAP-23表达与IL-1β分泌的正相关性;利用5`RACE和3`RACE技术克隆出鲈鱼SNAP-23全长基因,结合定点突变策略和靶向PCR克隆手段,构建鲈鱼SNAP-23野生型融合质粒pEGFP-SNAP-23wt,Cys缺失突变融合质粒pEGFP-SNAP-23ΔCys和模拟E型肉毒神经毒素(BoNT/E)切割突变融合质粒pEGFP-SNAP-23ΔBoNT/E,以及鲈鱼IL-1β野生型融合表达质粒IL-1β-pEGFP和IL-1β-pEYFP。所有融合蛋白均在鲈鱼巨噬细胞内成功表达,结合ELISA实验结果发现,SNAP-23野生型的表达对IL-1β的分泌有促进作用,而Cys缺失突变体的表达则抑制IL-1β向胞外分泌。首次证实了鱼类巨噬细胞内SNAP-23蛋白在IL-1β分泌过程中的重要作用。此外通过与GFP共表达,定位了IL-1β分子在巨噬细胞内的分布,发现新合成的IL-1β分子很可能像TNFα一样经“内质网-胞质-伪足-胞外” 的分泌路径运出胞外。
Resumo:
Neurogenesis occurs in two distinct regions of the adult brain; the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the subventricular zone (SVZ) lining the lateral ventricles. It is now well-known that adult hippocampal neurogenesis can be modulated by a number of intrinsic and extrinsic factors e.g. local signalling molecules, exercise, environmental enrichment and learning. Moreover, levels of adult hippocampal neurogenesis decrease with age, at least in rodents, and alterations in hippocampal neurogenesis have been reported in animal models and human studies of neuropsychiatric and neurodegenerative conditions. Neuroinflammation is a common pathological feature of these conditions and is also a potent modulator of adult hippocampal neurogenesis. Recently, the orphan nuclear receptor TLX has been identified as an important regulator of adult hippocampal neurogenesis as its expression is necessary to maintain the neural precursor cell (NPC) pool in the adult DG. Likewise, exposure of animals to voluntary exercise has been consistently demonstrated to promote adult hippocampal neurogenesis. Lentivirus (LV)- mediated gene transfer is a useful tool to elucidate gene function and to explore potential therapeutic candidates across an array of conditions as it facilitates sustained gene expression in both dividing and post-mitotic cell populations. Both intrinsic and extrinsic factors are important regulators of adult hippocampal neurogenesis. Examining how these factors are affected by an inflammatory stimulus, and the subsequent effects on adult hippocampal neurogenesis provides important information for the development of novel treatment strategies for neuropsychiatric and neurodegenerative conditions in which adult hippocampal neurogenesis is impaired. The aims of the series of experiments presented in this thesis were to examine the effect of the pro-inflammatory cytokine interleukin-1β (IL-1β) on adult hippocampal NPCs both in vitro and in vivo. In vitro, we have shown that IL-1β reduces proliferation of adult hippocampal NPCs in a dose and time-dependent manner. In addition, we have demonstrated that TLX expression is reduced by IL-1β. Blockade of IL-1β signalling prevented both the IL-1β-induced reduction in cell proliferation and TLX expression. In vivo, we examined the effect of short term and long term exposure to LV-IL-1β in sedentary mice and in mice exposed to voluntary running. We demonstrated that impaired hippocampal neurogenesis is only evident after long term exposure to IL-1β. In mice exposed to voluntary running, hippocampal neurogenesis is significantly increased following short-term but not long-term exposure to running. Moreover, short-term running effectively prevents any IL-1β-induced effects on hippocampal neurogenesis; however, no such effects are seen following long-term exposure to running.
Resumo:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.
Resumo:
Diabetes is associated with oxidative stress and increased levels of inflammatory cytokines. The aim of the study was to assess the effects of inflammatory cytokines and oxidative stress associated with raised glucose levels on inducible nitric oxide synthase (iNOS) promoter activity in intestinal epithelial cells. High glucose (25 mmol/l) conditions reduced glutathione (GSH) levels in the human intestinal epithelial cell line, DLD-1. Addition of the antioxidant alpha-lipoic acid resulted in the restoration of GSH levels to normal. Upregulation of basal iNOS promoter activity was observed when cells were incubated in high glucose alone. This effect was significantly reduced by the addition of the antioxidant, alpha-lipoic acid and completely blocked with inhibition of NFkappa B activity. Cytokine stimulation [interleukin-1 beta, tumor necrosis factor-alpha, interferon-gamma] induced iNOS promoter activity in all conditions and this was accompanied by an increase in nitric oxide (NO) production. Inhibition of NFkappa-B activity decreased but did not completely inhibit cytokine-induced iNOS promoter activity and subsequent NO production. In conclusion, high glucose-induced iNOS promoter activity is mediated in part through intracellular GSH and NFkappa-B.
Resumo:
A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia. (1). The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1. (2). However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP-schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.
Resumo:
Affiliation: Département de Médecine, Faculté de médecine, Université de Montréal & Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Hôpital Notre-Dame du CHUM
Resumo:
Les sites apuriniques/apyrimidinique (AP) représentent une forme de dommage à l’ADN hautement mutagène et ce type de dommage peut survenir spontanément ou être induit par une variété d’agents. Afin de préserver la stabilité génomique, deux familles d’endonucléases de type AP, endo-IV et exo-III, sont nécessaires pour contrecarrer les effets mutagènes des sites AP. Malgré l’identification de membres des deux familles dans plusieurs organismes unicellulaire tels que E.coli et S. cerevisiae, aucun membre de la famille endo-IV n’a été identifié chez les organismes multicellulaires à l’exception de C. elegans et de C. briggsae. Nous avons donc décidé d’investiguer l’importance biologique de APN-1 chez C. elegans par l’utilisation d’une approche de knockdown du gène. Dans notre étude, nous avons montré que le knockdown du gène apn-1 chez C. elegans, en utilisant des ARN d’interférence (ARNi), cause une accumulation de mutations spontanées et induites par des drogues résultant en un délai de l’éclosion des œufs ainsi que par une diminution de la survie et de la longévité des vers adultes. De plus, nous avons montré que cette accumulation de mutations mène à un délai dans la progression du cycle cellulaire durant l’embryogénèse, représentant possiblement une explication du délai dans l’éclosion des œufs. Nous avons montré qu’il y avait une augmentation du niveau de mutations dans la gorge des vers, sans toutefois pouvoir confirmer la distribution de APN-1 qui possède une étiquette GFP. Les animaux transgéniques APN-1-GFP n’exprimaient pas suffisamment de la protéine de fusion pour permettre une visualisation à l’aide d’un microscope à fluorescence, mais la protéine a été détectée par immunobuvardage de type western. Les animaux transgéniques APN-1-GFP étaient instables et avaient des phénotypes concordants avec les défauts génétiques. En conclusion, il semble que C. elegans aie évolué afin de retenir un niveau de base de APN-1 jouant ainsi un rôle versatile afin de maintenir l’intégrité génétique d’autant plus que cet organisme semble manquer plusieurs enzymes de la voie de réparation par excision de base.
Resumo:
Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.
Resumo:
Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by proinflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) andC/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. Journal of Endocrinology (2010) 206, 183-193
Resumo:
O objetivo deste estudo foi analisar o papel do polimorfismo de I/D do gene da Enzima Conversora de Angiotensina (ECA) e o polimorfismo K121Q da PC-1 nas modificações das taxas de filtração glomerular (TFG), excreção urinária de albumina (EUA) e pressão arterial em uma coorte de pacientes diabéticos tipo 1 normoalbuminúricos (EUA<20μg/min) em um estudo com seguimento de 10,2 ± 2,0anos (6,5 a 13,3 anos). A EUA (imunoturbidimetria), TFG (técnica da injeção única de 51Cr-EDTA), HbA1c (cromatografia de troca iônica) e pressão arterial foram medidas no início do estudo e a intervalos de 1,7 ± 0,6 anos. O polimorfismo I/D e K121Q foram determinados através da PCR e restrição enzimática. Onze pacientes apresentaram o genótipo II, 13 o ID e 6 apresentaram o genótipo DD. Pacientes com o alelo D (ID/DD) desenvolveram mais freqüentemente hipertensão arterial e retinopatia diabética. Os 3 pacientes do estudo que desenvolveram nefropatia diabética apresentaram o alelo D. Nos pacientes ID/DD (n=19) ocorreu maior redução da TFG quando comparados com os pacientes II (n=11) (-0,39 ± 0,29 vs – 0,12 ± 0,37 ml/min/mês; P=0,035). A presença do alelo D, em análise de regressão múltipla linear (R2=0,15; F=4,92; P=0,035) foi o único fator associado à redução da TFG (-0,29 ± 0,34 ml/min/mês; P<0,05). Já o aumento da EUA (log EUA = 0,0275 ± 0,042 μg/min/mês; P=0,002) foi associado somente aos níveis iniciais de EUA (R2=0,17; F=5,72; P=0,024). Um aumento significativo (P<0,05) no desenvolvimento de hipertensão arterial e de novos casos de retinopatia diabética foi observado somente nos pacientes com os genótipos ID/DD. Vinte e dois pacientes apresentaram genótipo KK, 7 KQ e 1 apresentou genótipo QQ. Pacientes com os genótipos KQ/QQ apresentaram um aumento significativo (P=0,045) de novos casos de retinopatia diabética. Em conclusão a presença do alelo D nesta amostra de pacientes DM tipo 1 normoalbuminúricos e normotensos está associada com aumento na proporção de complicações microvasculares e hipertensão arterial.
Resumo:
Background: The purpose of this experimental study was to evaluate the collagen fiber distribution histologically after phenytoin, cyclosporin, or nifedipine therapy and to correlate it with collagen I and matrix metalloproteinase (MMP)-1 and -2 gene expression levels.Methods: Gingival samples from the canine area were obtained from 12 male monkeys (Cebus apella). The mesial part of each sample was assessed by reverse transcription-polymerase chain reaction, whereas the distal part was processed histologically for picrosirius red and hematoxylin and eosin stainings, as well as for collagen IV immunostaining. One week after the first biopsy, the animals were assigned to three groups that received daily oral dosages of cyclosporin, phenytoin, or nifedipine for 120 days. Additional gingival samples were obtained on days 52 and 120 of treatment from two animals from each group on the opposite sides from the first biopsies.Results: Picrosirius red staining showed a predominance of mature collagen fibers in the control group. Conversely, there was an enlargement of areas occupied by immature collagen fibers in all groups at days 52 and 120, which was not uniform over each section. There was a general trend to lower levels of MMP-1 gene expression on day 52 and increased levels on day 120. Phenytoin led to increased levels of MMP-2 and collagen I gene expression on day 120, whereas the opposite was observed in the nifedipine group.Conclusion: Cyclosporin, phenytoin, and nifedipine led to phased and drug-related gene expression patterns, resulting in impaired collagen metabolism, despite the lack of prominent clinical signs.
Resumo:
Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.