991 resultados para integro-differential optimality equation
Resumo:
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10
Resumo:
A dichotomysimilar property for a class of homogeneous differential equations in an arbitrary Banach space is introduced. By help of them, existence of quasi bounded solutions of the appropriate nonhomogeneous equation is proved.
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11
Resumo:
MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo
Resumo:
MSC 2010: 34A08 (main), 34G20, 80A25
Resumo:
2000 Mathematics Subject Classification: 34K15.
Resumo:
2010 Mathematics Subject Classification: 74J30, 34L30.
Resumo:
2010 Mathematics Subject Classification: 34A30, 34A40, 34C10.
Resumo:
2000 Mathematics Subject Classification: 35L05, 35P25, 47A40.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
2000 Mathematics Subject Classification: 34K15, 34C10.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.
Resumo:
We study the Dirichlet to Neumann operator for the Riemannian wave equation on a compact Riemannian manifold. If the Riemannian manifold is modelled as an elastic medium, this operator represents the data available to an observer on the boundary of the manifold when the manifold is set into motion through boundary vibrations. We study the Dirichlet to Neumann operator when vibrations are imposed and data recorded on disjoint sets, a useful setting for applications. We prove that this operator determines the Dirichlet to Neumann operator where sources and observations are on the same set, provided a spectral condition on the Laplace-Beltrami operator for the manifold is satisfied. We prove this by providing an implementable procedure for determining a portion of the Riemannian manifold near the area where sources are applied. Drawing on established results, an immediate corollary is that a compact Riemannian manifold can be reconstructed from the Dirichlet to Neumann operator where sources and observations are on disjoint sets.