880 resultados para insulin receptor substrate proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia is one of many factors involved in the regulation of the IGF system. However, no information is available regarding the regulation of the IGF system by acute hypoxia in humans. Objective: The aim of this study was to evaluate the effect of acute hypoxia on the IGF system of children. Design: Twenty-seven previously health children (14 boys and 13 girls) aged 15 days to 9.5 years were studied in two different situations: during a hypoxemic state (HS) due to acute respiratory distress and after full recovery to a normoxemic state (NS). In these two situations oxygen saturation was assessed with a pulse-oximeter and blood samples were collected for serum IGF-I, IGF-II, IGFBP-1, IGFBP-3, ALS and insulin determination by ELISA; fluoroimmunometric assay determination for GH and also for IGF1R gene expression analysis in peripheral lymphocytes by quantitative real-time PCR. Data were paired and analyzed by the Wilcoxon non-parametric test. Results: Oxygen saturation was significantly lower during HS than in NS (P<0.0001). IGF-I and IGF-II levels were lower during HS than in NS (P<0.0001 and P=0.0004. respectively). IGFBP-3 levels were also lower in HS than in NS (P=0.0002) while ALS and basal GH levels were higher during HS (P=0.0015 and P=0.014, respectively). Moreover, IGFBP-1 levels were higher during HS than in NS (P=0.004). No difference was found regarding insulin levels. The expression of IGF1R mRNA as 2(-Delta Delta CT) was higher during HS than in NS (P=0.03). Conclusion: The above results confirm a role of hypoxia in the regulation of the IGF system also in humans. This effect could be direct on the liver and/or mediated by GH and it is not restricted to the hepatocytes but involves other cell lines. During acute hypoxia a combination of alterations usually associated with reduced IGF action was observed. The higher expression of IGF1R mRNA may reflect an up-regulation of the transcriptional process. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Anti-oxidation and exocytosis are important for maintaining exocrine tissue homeostasis. During aging, functional and structural alterations occur in the lacrimal gland (LG), including oxidative damage to proteins, lipids, and DNA. The aims of the present study were to determine in the aging LG: a) the effects of aging on LG structure and secretory activity and b) changes in the expression of oxidative stress markers. Methods: To address these goals, tear secretion composition and corneal impression cytology were compared between male Wistar rats of 2 (control) and 24 (aged) months. LG morphology and the expression levels of vitamin E and malonaldehyde (MDA) were evaluated to determine the anti-oxidant activity and lipid peroxidation, respectively. RT-PCR and western blot analysis were used for the analysis of Ras related in brain GTPase protein (Rab) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins of the secretory machinery (i.e.; Rab 3d, Rab 27, vesicle-associated membrane protein-2 (Vamp-2), and syntaxin). Results: Histological analysis of aged rats revealed a higher frequency of corneal epithelia metaplasia. In the acinar cells, organelles underwent degeneration, and lipofucsin-like material accumulated in the cytoplasm along with declines in the anti-oxidant marker vitamin E. Rab3d and Rab27b mRNA levels fell along with Rab3d protein expression, whereas syntaxin levels increased. Conclusions: These findings indicate that exocytotic and anti-oxidant mechanisms become impaired with age in the rat LG. In parallel with these structural alterations, functional declines may contribute to the pathophysiology caused by tear film modification in dry eye disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose metabolism and insulin signaling disruptions in the brain have been proposed as a likely etiology of Alzheimer's disease. The aim of the present study was to investigate the time course of cognitive impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and correlate them with the ensuing neurodegenerative process. Early and late effects of STZ were evaluated by using the reference and working memory versions of the Morris' water maze task and the evaluation of neurodegenerative markers by immunoblotting and the Fluoro-jade C histochemistry. The results revealed different types of behavioral and neurodegenerative responses, with distinct time courses. We observed an early disruption on the working memory as early as 3 h after STZ injections, which was followed by degenerative processes in the hippocampus at 1 and 15 days after STZ injections. Memory disruption increases over time and culminates with significant changes in amyloid-beta peptide and hyperphosphorylated Tau protein levels in distinct brain structures. These findings add information on the Alzheimer's disease-like STZ animal model and on the mechanisms underlying neurodegenerative processes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde eine Analysenmethode auf Basis der Massenbestimmung über Elektrospray-Ionisation qualifiziert, mit der es möglich ist, den Gehalt beider in humanen Zellen vorliegenden isoformen Chaperone HSP90-alpha und HSP90-beta sowie deren Phosphorylierungsstatus in der sog. „charged linker“-Region (CLR) getrennt voneinander zu bestimmen. Die Quantifizierung dieser posttranslationalen Modifikation von HSP90 in der noch wenig untersuchten Region des Chaperons stellte eine besondere Herausforderung an das analytische Messsystem dar, da diese sich fast ausschließlich aus geladenen Aminosäuren zusammensetzt und eine hohe Sequenzhomologie der beiden Isoformen in humanen Zellen vorliegt. Mit dieser Methode ist es gelungen, sowohl die stärkere Expression beider Isoformen in Tumor-Zelllinien im Vergleich zu Nicht-Tumor-Zelllinien als auch signifikant höhere Level beider phosphorylierten Varianten in den Tumor-Zelllinien nachzuweisen. Des Weiteren konnte durch gezielte Arretierung der Tumor-Zelllinie HCT116 in der G0/G1-Phase des Zellzyklus der Nachweis erbracht werden, dass nur HSP90-alpha in diesem Ruhestadium der Zellteilung in der phosphorylierten Form vorliegt. rnDa die Phosphorylierung der CLR von HSP90 als ein Marker für die Substrataktivierung herangezogen werden kann, besteht jetzt die Möglichkeit, Auswirkungen von z. B. HSP90-Inhibitoren auf beide HSP90-Isoformen hinsichtlich ihrer Expression und Phosphorylierung durch die Casein Kinase II (CK II) im zellulären Umfeld zu testen.rnIn-vitro konnte die Phosphorylierung der CLR von HSP90-alpha und -beta mit der CK II an den rekombinant hergestellten Proteinen nachgestellt werden. Dieses typische Phosphorylierungs-Motiv (S-X-X-E/D) findet man bei sehr vielen Co-Chaperonen wie auch bei der Prostaglandin E Synthase p23, das ebenfalls durch eine in-vitro Kinase-Reaktion mit der CK II an drei Positionen phosphoryliert wurde. Durch ein Binde-Assay zeigte sich, dass p23 nur in dieser modifizierten Form an HSP90-alpha bindet. Das Bindeverhalten von p23 an die beta-Isoform wird durch diese Phosphorylierung jedoch nicht beeinflusst. Diese Erkenntnisse erweitern das Verständnis des bis dato beschriebenen Chaperon-Zyklus von HSP90 und zeigen deutliche Unterschiede in den Aktivierungszyklen beider Isoformen auf. Da die Casein Kinase II hier entscheidend in den durch HSP90 vermittelten Aktivierungsprozess eingreift, eröffnet sich ein weites Feld an Möglichkeiten, diese Prozesse an weiteren Co-Chaperonen und Substratproteinen zu studieren.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell-cycle dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND It is unknown why patients with extensive ulcerative colitis (UC) have a higher risk of colorectal cancer compared with patients with left-sided UC. This study characterizes the inflammatory processes in left-sided UC, pancolitis, and UC-associated dysplasia at the transcriptional level to identify potential biomarkers and transcripts of importance for the carcinogenic behavior of chronic inflammation. METHODS The Affymetrix GeneChip Human Genome U133 Plus 2.0 was applied on colonic biopsies from UC patients with left-sided UC, pancolitis, dysplasia, and controls. Reverse transcription polymerase chain reaction and immunohistochemistry were performed for validating selected transcripts in the initial cohort and in 2 independent cohorts of patients with UC. Microarray data were analyzed by principal component analysis, and reverse transcription polymerase chain reaction and immunohistochemistry data by the Wilcoxon's rank-sum test. RESULTS The principal component analysis results revealed separate clusters for left-sided UC, pancolitis, dysplasia, and controls. Close clustering of dysplastic and pancolitic samples indicated similarities in gene expression. Indeed, 101 and 656 parallel upregulated and downregulated transcripts, respectively, were identified in specimens from dysplasia and pancolitis. Validation of selected transcripts hereof identified insulin receptor alpha (INSRA) and MAP kinase interacting serine/threonine kinase 2 (MKNK2) with an enhanced expression in dysplasia compared with left-sided UC and controls, whereas laminin γ2 (LAMC2) was found with a lower expression in dysplasia compared with the remaining 3 groups. CONCLUSIONS This study demonstrates pancolitis and left-sided UC as distinct inflammatory processes at the transcriptional level, and identifies INSRA, MKNK2, and LAMC2 as potential critical transcripts in the inflammation-driven preneoplastic process of UC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thoracic aortic aneurysms and dissections (TAAD) are autosomal dominantly inherited in 19% of patients. Mapping studies determined that the disease is genetically heterogeneous with multiple loci and genetic mutations accounting for familial TAAD. However, regardless of the specific mutation, resulting pathology is consistently medial degeneration, characterized by increased proteoglycans and loss of elastic fibers. We tested the hypothesis that genetic mutations leading to familial TAAD alter common pathways in aortic smooth muscle cells (SMCs). Identification of mutations at R460 in TGFBR2 reveals a 5% contribution to TAAD, however downstream analysis of Smad2 phosphorylation in the TGF-β pathway is not commonly altered in familial or sporadic disease when compared to controls. Expression profiling using Illumina's Sentrix HumanRef 8 Expression Beadchip array was done on RNA isolated from SMCs explanted from 6 patients with inherited TAAD with no identified mutation and 3 healthy controls obtained from the International Institute for the Advancement of Medicine. Significant increases in expression of proteoglycan genes in patients' SMCs, specifically lumican, podocan, and decorin were confirmed using Q-PCR and tissue immunofluorescence. NCI's Ingenuity Pathway Analysis predicted alterations in the ERK, insulin receptor and SAPK/JNK pathways (p<0.001), which SMCs activate in response to cyclic stretch. Immunoblotting indicated increased phosphorylation of ERK and GSK-3β, a protein from the insulin receptor pathway, in explanted patient SMCs, also confirmed by increased immunoreactivity against phosphorylated ERK and GSK-3β in the sub-intimal SMCs from patient tissue compared to controls. To determine if mechanotransduction pathway activation was responsible for the medial degeneration a specific inhibitor of GSK-3β, SB216763 was incubated with control cells and significantly increased the expression levels of proteoglycans. Mechanical strain was also applied to control SMCs confirming pathways stimulation with stretch. Incubation with pathway inhibitors against insulin receptor and ERK pathways identify, for the first time that stretch induced GSK-3β phosphorylation may increase proteoglycan expression, and ERK phosphorylation may regulate the expression of MMP2, a protein known to degrade elastic fibers. Furthermore, specific mutations in SMC-specific β-myosin heavy chain and α-actin, in addition to upregulation of pathways activated by cyclic stretch suggest that SMC response to hemodynamic factors, play a role in this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las cascadas de señalización mediadas por proteína quinasas activadas por mitógeno (MAP quinasas) son capaces de integrar y transducir señales ambientales en respuestas celulares. Entre estas señales se encuentran los PAMPs/MAMPs (Pathogen/Microbe-Associated Molecular Patterns), que son moléculas de patógenos o microorganismos, o los DAMPs (Damaged-Associated Molecular Patterns), que son moléculas derivadas de las plantas producidas en respuesta a daño celular. Tras el reconocimiento de los PAMPs/DAMPs por receptores de membrana denominados PRRs (Pattern Recognition Receptors), como los receptores con dominio quinasa (RLKs) o los receptores sin dominio quinasa (RLPs), se activan respuestas moleculares, incluidas cascadas de MAP quinasas, que regulan la puesta en marcha de la inmunidad activada por PAMPs (PTI). Esta Tesis describe la caracterización funcional de la MAP quinasa quinasa quinasa (MAP3K) YODA (YDA), que actúa como un regulador clave de la PTI en Arabidopsis. Se ha descrito previamente que YDA controla varios procesos de desarrollo, como la regulación del patrón estomático, la elongación del zigoto y la arquitectura floral. Hemos caracterizado un alelo mutante hipomórfico de YDA (elk2 o yda11) que presenta una elevada susceptibilidad a patógenos biótrofos y necrótrofos. Notablemente, plantas que expresan una forma constitutivamente activa de YDA (CA-YDA), con una deleción en el dominio N-terminal, presentan una resistencia de amplio espectro frente a diferentes tipos de patógenos, incluyendo hongos, oomicetos y bacterias, lo que indica que YDA juega un papel importante en la regulación de la resistencia de las plantas a patógenos. Nuestros datos indican que esta función es independiente de las respuestas inmunes mediadas por los receptores previamente caracterizados FLS2 y CERK1, que reconocen los PAMPs flg22 y quitina, respectivamente, y que están implicados en la resistencia de Arabidopsis frente a bacterias y hongos. Hemos demostrado que YDA controla la resistencia frente al hongo necrótrofo Plectosphaerella cucumerina y el patrón estomático mediante su interacción genética con la RLK ERECTA (ER), un PRR implicado en la regulación de estos procesos. Por el contrario, la interacción genética entre ER y YDA en la regulación de otros procesos de desarrollo es aditiva en lugar de epistática. Análisis genéticos indicaron que MPK3, una MAP quinasa que funciona aguas abajo de YDA en el desarrollo estomático, es un componente de la ruta de señalización mediada por YDA para la resistencia frente a P. cucumerina, lo que sugiere que el desarrollo de las plantas y la PTI comparten el módulo de transducción de MAP quinasas asociado a YDA. Nuestros experimentos han revelado que la resistencia mediada por YDA es independiente de las rutas de señalización reguladas por las hormonas de defensa ácido salicílico, ácido jasmónico, ácido abscísico o etileno, y también es independiente de la ruta de metabolitos secundarios derivados del triptófano, que están implicados en inmunidad vegetal. Además, hemos demostrado que respuestas asociadas a PTI, como el aumento en la concentración de calcio citoplásmico, la producción de especies reactivas de oxígeno, la fosforilación de MAP quinasas y la expresión de genes de defensa, no están afectadas en el mutante yda11. La expresión constitutiva de la proteína CA-YDA en plantas de Arabidopsis no provoca un aumento de las respuestas PTI, lo que sugiere la existencia de mecanismos de resistencia adicionales regulados por YDA que son diferentes de los regulados por FLS2 y CERK1. En línea con estos resultados, nuestros datos transcriptómicos revelan una sobre-representación en plantas CA-YDA de genes de defensa que codifican, por ejemplo, péptidos antimicrobianos o reguladores de muerte celular, o proteínas implicadas en la biogénesis de la pared celular, lo que sugiere una conexión potencial entre la composición e integridad de la pared celular y la resistencia de amplio espectro mediada por YDA. Además, análisis de fosfoproteómica indican la fosforilación diferencial de proteínas relacionadas con la pared celular en plantas CA-YDA en comparación con plantas silvestres. El posible papel de la ruta ER-YDA en la regulación de la integridad de la pared celular está apoyado por análisis bioquímicos y glicómicos de las paredes celulares de plantas er, yda11 y CA-YDA, que revelaron cambios significativos en la composición de la pared celular de estos genotipos en comparación con la de plantas silvestres. En resumen, nuestros datos indican que ER y YDA forman parte de una nueva ruta de inmunidad que regula la integridad de la pared celular y respuestas defensivas, confiriendo una resistencia de amplio espectro frente a patógenos. ABSTRACT Plant mitogen-activated protein kinase (MAPK) cascades transduce environmental signals and developmental cues into cellular responses. Among these signals are the pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the damage-associated molecular patterns (DAMPs). These PAMPs/DAMPs, upon recognition by plant pattern recognition receptors (PRRs), such as Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), activate molecular responses, including MAPK cascades, which regulate the onset of PAMP-triggered immunity (PTI). This Thesis describes the functional characterization of the MAPK kinase kinase (MAP3K) YODA (YDA) as a key regulator of Arabidopsis PTI. YDA has been previously described to control several developmental processes, such as stomatal patterning, zygote elongation and inflorescence architecture. We characterized a hypomorphic, non-embryo lethal mutant allele of YDA (elk2 or yda11) that was found to be highly susceptible to biotrophic and necrotrophic pathogens. Remarkably, plants expressing a constitutive active form of YDA (CA-YDA), with a deletion in the N-terminal domain, showed broad-spectrum resistance to different types of pathogens, including fungi, oomycetes and bacteria, indicating that YDA plays a relevant function in plant resistance to pathogens. Our data indicated that this function is independent of the immune responses regulated by the well characterized FLS2 and CERK1 RLKs, which are the PRRs recognizing flg22 and chitin PAMPs, respectively, and are required for Arabidopsis resistance to bacteria and fungi. We demonstrate that YDA controls resistance to the necrotrophic fungus Plectosphaerella cucumerina and stomatal patterning by genetically interacting with ERECTA (ER) RLK, a PRR involved in regulating these processes. In contrast, the genetic interaction between ER and YDA in the regulation of other ER-associated developmental processes was additive, rather than epistatic. Genetic analyses indicated that MPK3, a MAP kinase that functions downstream of YDA in stomatal development, also regulates plant resistance to P. cucumerina in a YDA-dependent manner, suggesting that the YDA-associated MAPK transduction module is shared in plant development and PTI. Our experiments revealed that YDA-mediated resistance was independent of signalling pathways regulated by defensive hormones like salicylic acid, jasmonic acid, abscisic acid or ethylene, and of the tryptophan-derived metabolites pathway, which are involved in plant immunity. In addition, we showed that PAMP-mediated PTI responses, such as the increase of cytoplasmic Ca2+ concentration, reactive oxygen species (ROS) burst, MAPK phosphorylation, and expression of defense-related genes are not impaired in the yda11 mutant. Furthermore, the expression of CA-YDA protein does not result in enhanced PTI responses, further suggesting the existence of additional mechanisms of resistance regulated by YDA that differ from those regulated by the PTI receptors FLS2 and CERK1. In line with these observations, our transcriptomic data revealed the over-representation in CA-YDA plants of defensive genes, such as those encoding antimicrobial peptides and cell death regulators, and genes encoding cell wall-related proteins, suggesting a potential link between plant cell wall composition and integrity and broad spectrum resistance mediated by YDA. In addition, phosphoproteomic data revealed an over-representation of genes encoding wall-related proteins in CA-YDA plants in comparison with wild-type plants. The putative role of the ER-YDA pathway in regulating cell wall integrity was further supported by biochemical and glycomics analyses of er, yda11 and CA-YDA cell walls, which revealed significant changes in the cell wall composition of these genotypes compared with that of wild-type plants. In summary, our data indicate that ER and YDA are components of a novel immune pathway that regulates cell wall integrity and defensive responses, which confer broad-spectrum resistance to pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of von Hippel–Lindau disease (VHL) tumor-suppressor gene product (pVHL) are found in patients with dominant inherited VHL syndrome and in the vast majority of sporadic clear cell renal carcinomas. The function of the pVHL protein has not been clarified. pVHL has been shown to form a complex with elongin B and elongin C (VBC) and with cullin (CUL)-2. In light of the structural analogy of VBC-CUL-2 to SKP1-CUL-1-F-box ubiquitin ligases, the ubiquitin ligase activity of VBC-CUL-2 was examined in this study. We show that VBC-CUL-2 exhibits ubiquitin ligase activity, and we identified UbcH5a, b, and c, but not CDC34, as the ubiquitin-conjugating enzymes of the VBC-CUL-2 ubiquitin ligase. The protein Rbx1/ROC1 enhances ligase activity of VBC-CUL-2 as it does in the SKP1-CUL-1-F-box protein ligase complex. We also found that pVHL associates with two proteins, p100 and p220, which migrate at a similar molecular weight as two major bands in the ubiquitination assay. Furthermore, naturally occurring pVHL missense mutations, including mutants capable of forming a complex with elongin B–elongin C-CUL-2, fail to associate with p100 and p220 and cannot exhibit the E3 ligase activity. These results suggest that pVHL might be the substrate recognition subunit of the VBC-CUL-2 E3 ligase. This is also, to our knowledge, the first example of a human tumor-suppressor protein being directly involved in the ubiquitin conjugation system which leads to the targeted degradation of substrate proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RanBP2, a protein containing FG repeat motifs and four binding sites for the guanosine triphosphatase Ran, is localized at the cytoplasmic periphery of the nuclear pore complex (NPC) and is believed to play a critical role in nuclear protein import. We purified RanBP2 from rat liver nuclear envelopes and examined its structural and biochemical properties. Electron microscopy showed that RanBP2 forms a flexible filamentous molecule with a length of ∼36 nm, suggesting that it comprises a major portion of the cytoplasmic fibrils implicated in initial binding of import substrates to the NPC. Using in vitro assays, we characterized the ability of RanBP2 to bind p97, a cytosolic factor implicated in the association of the nuclear localization signal receptor with the NPC. We found that RanGTP promotes the binding of p97 to RanBP2, whereas it inhibits the binding of p97 to other FG repeat nucleoporins. These data suggest that RanGTP acts to specifically target p97 to RanBP2, where p97 may support the binding of an nuclear localization signal receptor/substrate complex to RanBP2 in an early step of nuclear import.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are studying endoplasmic reticulum–associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI332, containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI332 was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of ∼45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI332 in which the single used N-glycosylation consensus site had been removed (RI332-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI332 degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI332 to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI332. After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI332 and RI332-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI332 and RI332-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI332 was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

αB-crystallin, a member of the small heat shock protein family, possesses chaperone-like function. Recently, it has been shown that a missense mutation in αB-crystallin, R120G, is genetically linked to a desmin-related myopathy as well as to cataracts [Vicart, P., Caron, A., Guicheney, P., Li, A., Prevost, M.-C., Faure, A., Chateau, D., Chapon, F., Tome, F., Dupret, J.-M., et al. (1998) Nat. Genet. 20, 92–95]. By using α-lactalbumin, alcohol dehydrogenase, and insulin as target proteins, in vitro assays indicated that R120G αB-crystallin had reduced or completely lost chaperone-like function. The addition of R120G αB-crystallin to unfolding α-lactalbumin enhanced the kinetics and extent of its aggregation. R120G αB-crystallin became entangled with unfolding α-lactalbumin and was a major portion of the resulting insoluble pellet. Similarly, incubation of R120G αB-crystallin with alcohol dehydrogenase and insulin also resulted in the presence of R120G αB-crystallin in the insoluble pellets. Far and near UV CD indicate that R120G αB-crystallin has decreased β-sheet secondary structure and an altered aromatic residue environment compared with wild-type αB-crystallin. The apparent molecular mass of R120G αB-crystallin, as determined by gel filtration chromatography, is 1.4 MDa, which is more than twice the molecular mass of wild-type αB-crystallin (650 kDa). Images obtained from cryoelectron microscopy indicate that R120G αB-crystallin possesses an irregular quaternary structure with an absence of a clear central cavity. The results of this study show, through biochemical analysis, that an altered structure and defective chaperone-like function of αB-crystallin are associated with a point mutation that leads to a desmin-related myopathy and cataracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many biological processes require proteins to undergo conformational changes at the surface of membranes. For example, some precursor proteins unfold at the surface of mitochondria and chloroplasts before translocation into the organelles, and toxins such as colicin A unfold to the molten globule state at bacterial surfaces before inserting into the cell membrane. It is commonly thought that the membrane surfaces and the associated protein machinery destabilize the substrate proteins and that this effect is required for membrane insertion or translocation. One of the best characterized translocation processes is protein import into mitochondria. By measuring the contributions of individual interactions within a model protein to its stability at the mitochondrial surface and in free solution, we show here that the mitochondrial surface neither induces the molten globule state in this protein nor preferentially destabilizes any type of interaction (e.g., hydrogen bonds, nonpolar, etc.) within the protein. Because it is not possible to measure absolute protein stability at the surface of mitochondria, we determined the stability of a tightly associated protein–protein complex at the mitochondrial import site as a model of the stability of a protein. We found the binding constants of the protein–protein complex at the mitochondrial surface and in free solution to be identical. Our results demonstrate that the mitochondrial surface does not destabilize importing precursor proteins in its vicinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sed5p is the only syntaxin family member required for protein transport through the yeast Golgi and it is known to bind up to nine other soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins in vivo. We describe in vitro binding experiments in which we identify ternary and quaternary Sed5p-containing SNARE complexes. The formation of SNARE complexes among these endoplasmic reticulum- and Golgi-localized proteins requires Sed5p and is syntaxin-selective. In addition, Sed5p-containing SNARE complexes form selectively and this selectivity is mediated by Sed5p-containing intermediates that discriminate among subsequent binding partners. Although many of these SNAREs have overlapping distributions in vivo, the SNAREs that form complexes with Sed5p in vitro reflect their functionally distinct locales. Although SNARE–SNARE interactions are promiscuous and a single SNARE protein is often found in more than one complex, both the biochemical as well as genetic analyses reported here suggest that this is not a result of nonselective direct substitution of one SNARE for another. Rather our data are consistent with the existence of multiple (perhaps parallel) trafficking pathways where Sed5p-containing SNARE complexes play overlapping and/or distinct functional roles.