912 resultados para induced apoptosis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To identify programmed cell death (PCD) pathways involved in N-methyl-N-nitrosourea (MNU)-induced photoreceptor (PR) degeneration. METHODS: Adult C57BL/6 mice received a single MNU i.p. injection (60 mg/kg bodyweight), and were observed over a period of 7 days. Degeneration was visualized by H&E overview staining and electron microscopy. PR cell death was measured by quantifying TUNEL-positive cells in the outer nuclear layer (ONL). Activity measurements of key PCD enzymes (calpain, caspases) were used to identify the involved cell death pathways. Furthermore, the expression level of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), key players in endoplasmic reticulum (ER) stress-induced apoptosis, was analyzed using quantitative real-time PCR. RESULTS: A decrease in ONL thickness and the appearance of apoptotic PR nuclei could be detected beginning 3 days post-injection (PI). This was accompanied by an increase of TUNEL-positive cells. Significant upregulation of activated caspases (3, 9, 12) was found at different time periods after MNU injection. Additionally, several other players of nonconventional PCD pathways were also upregulated. Consequently, calpain activity increased in the ONL, with a maximum on day 7 PI and an upregulation of CHOP and GRP78 expression beginning on day 1 PI was found. CONCLUSIONS: The data indicate that regular apoptosis is the major cause of MNU-induced PR cell death. However, alternative PCD pathways, including ER stress and calpain activation, are also involved. Knowledge about the mechanisms involved in this mouse model of PR degeneration could facilitate the design of putative combinatory therapeutic approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasmodium berghei is the causative agent of rodent malaria and is widely used as a model system to study the liver stage of Plasmodium parasites. The entry of P. berghei sporozoites into hepatocytes has extensively been studied, but little is known about parasite-host interaction during later developmental stages of the intracellular parasite. Growth of the parasite far beyond the normal size of the host cell is an important stress factor for the infected cell. Cell stress is known to trigger programmed cell death (apoptosis) and we examined several apoptotic markers in P. berghei-infected cells and compared their level of expression and their distribution to that of non-infected cells. As none of the apoptotic markers investigated were found altered in infected cells, we hypothesized that parasite infection might confer resistance to apoptosis of the host cell. Treatment with peroxide or serum deprivation induced apoptosis in non-infected HepG2 cells, whereas P. berghei-infected cells appeared protected, indicating that the parasite interferes indeed with the apoptotic machinery of the host cell. To prove the physiological relevance of these results, mice were infected with high numbers of P. berghei sporozoites and treated with tumour necrosis factor (TNF)-alpha/D-galactosamine to induce massive liver apoptosis. Liver sections of these mice, stained for degraded DNA, confirmed that infected cells containing viable parasites were protected from programmed cell death. However, in non-treated control mice as well as in TNF-alpha-treated mice a small proportion of dead intracellular parasites with degraded DNA were detected. Most hepatocytes containing dead parasites provoked an infiltration of immunocompetent cells, indicating that these cells are no longer protected from cell death.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The central nervous system GABAA/Benzodiazepine (GABAA/BZD) receptors are targets for many pharmaceutical agents and several classes of pesticides. Lindane is an organochlorine pesticide, although banned from production in the U.S. since 1977, still imported for use as an insecticide and pharmaceutically to control ectoparasites (ATSDR, 1994). Lindane functions as a GABA/BZD receptor antagonist within the central nervous system (CNS). Outside of the CNS, peripheral BZD receptors have been localized to the distal tubule of the kidney. Previous research in our laboratory has shown that incubation of renal cortical slices with lindane can produce an increase in kallikrein leakage, suggesting a distal tubular effect. In this study, Madin Darby Canine Kidney (MDCK) cells were used as an in vitro system to assess the toxicity of lindane. This purpose of this study was to determine if interactions between a renal distal tubular BZD-like receptor and lindane could lead to perturbations in renal distal cellular chloride (Cl−) transport and mitochondrial dysfunction and ultimately, cellular death. ^ Pertubations in renal chloride transport were measured indirectly by determining if lindane altered cell function responsiveness following osmotic stress. MDCK cells pre-treated with lindane and then subjected to osmotic stress remained swollen for up to 12 hours post-stress. Lindane-induced dysfunction was assessed through stress protein induction measured by Western Blot analysis. Lindane pretreatment delayed Heat Shock Protein 72 (HSP72) induction by 36 hours in osmotically stressed cells. Pretreatment with 1 × 10 −5 M LIN followed by osmotic stress elevated p38 and Stress Activated Protein Kinase (SAPK/JNK) at 15 minutes which declined at 30 minutes. Lindane appeared to have no effect on Endoplasmic Reticulum Related Kinase (ERK) induction. Lindane did not effect osmotically stressed LLC-PKI cells, a control cell line. ^ Lindane-treated MDCK cells did not exhibit necrosis. Instead, apoptosis was observed in lindane-treated MDCK cells in both time- and dose-dependent manners. LLC-PKI cells were not affected by LIN treatment. ^ To better understand the mechanism of lindane-induced apoptosis, mitochondrial function was measured. No changes in cytochrome c release or mitochondrial membrane potential were observed suggesting the mitochondrial pathway was not involved in lindane-induced apoptosis. ^ Further research will need to be conducted to determine the mechanism of lindane-induced adverse cellular effects. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Programmed cell death is an anticancer mechanism utilized by p53 that when disrupted can accelerate tumor development in response to oncogenic stress. Defects in the RB tumor suppressor cause aberrant cell proliferation as well as apoptosis. The combinatorial loss of the p53 and RB pathways is observed in a large percentage of human tumors. The E2F family of transcription factors primarily mediates the phenotype of Rb loss, since RB is a negative regulator of E2F. Contrary to early expectations, it has now been shown that the ARF (alternative reading frame) tumor suppressor is not required for p53-dependent apoptosis in response to deregulation of the RB/E2F pathway. In this study, we demonstrate that ATM, known as a DNA double-strand break (DSB) sensor, is responsible for ARF-independent apoptosis and p53 activation induced by deregulated E2F1. Moreover, NBS1, a component of the MRN DNA repair complex, is also required for E2F1-induced apoptosis and apparently works in the same pathway as ATM. We further found that endogenous E2F1 and E2F3 both play a role in apoptosis and ATM activation in response to inhibition of RB by the adenoviral E1A oncoprotein. We demonstrate that, unlike deregulated E2F3 and Myc, ATM activation by deregulated E2F1 does not involve the induction of DNA damage, autophosphorylation of ATM on Ser 1981, a marker of ATM activation by DSB, but does depend on the presence of NBS1, suggesting that E2F1 activates ATM in a different manner from E2F3 and Myc. Results from domain mapping studies show that the DNA binding, dimerization, and marked box domains of E2F1 are required to activate ATM and stimulate apoptosis but the transactivation domain is not. This implies that E2F1's DNA binding and interaction with other proteins through the marked box domain are necessary to induce ATM activation leading to apoptosis but transcriptional activation by E2F1 is dispensable. Together these data suggest a model in which E2F1 activates ATM to phosphorylate p53 through a novel mechanism that is independent of DNA damage and transcriptional activation by E2F1.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML), a myeloproliferative disorder, represents approximately 15-20% of all adult leukemia. The development of CML is clearly linked to the constitutively active protein-tyrosine kinase BCR-ABL, which is encoded by BCR-ABL fusion gene as the result of chromosome 9/22 translocation (Philadelphia chromosome). Previous studies have demonstrated that oxidative stress-associated genetic, metabolic and biological alterations contribute to CML cell survival and drug refractory. Mitochondria and NAD(P)H oxidase (NOX) are the major sources of BCR-ABL-induced cellular reactive oxygen species (ROS) production. However, it is still unknown how CML cells maintain the altered redox status, while escaping from the persistent oxidative stress-induced cell death. Therefore, elucidation of the mechanisms by which CML cells cope with oxidative stress will provide new insights into CML leukemogenesis. The major goal of this study is to identify the survival factors protecting CML cells against oxidative stress and develop novel therapeutic strategies to overcome drug resistance. Several experimental models were used to test CML cell redox status and cellular sensitivity to oxidative stress, including BCR-ABL inducible cell lines, BCR-ABL stably transformed cell lines and BCR-ABL-expressing CML blast crisis cells with differential BCL-XL/BCL-2 expressions. Additionally, an artificial CML cell model with heterogenic BCL-XL/BCL-2 expression was established to assess the correlation between differential survival factor expression patterns and cell sensitivity to Imatinib and oxidative stress. In this study, BCL-XL and GSH have been identified as the major survival factors responsive to BCR-ABL-promoted cellular oxidative stress and play a dominant role in regulating the threshold of oxidative stress-induced apoptosis. Cell survival factors BCL-XL and BCL-2 differentially protect mitochondria under oxidative stress. BCL-XL is an essential survival factor in preventing excessive ROS-induced cell death while BCL-2 seems to play a relatively minor role. Furthermore, the redox modulating reagent β-phenethyl isothiocyanate (PEITC) has been found to efficiently deplete GSH and induce potent cell killing effects in drug-resistant CML cells. Combination of PEITC with BCL-XL/BCL2 inhibitor ABT737 or suppression of BCL-XL by BCR-ABL inhibitor Gleevec dramatically sensitizes CML cells to apoptosis. These results have suggested that elevation of BCL-XL and cellular GSH are important for the development of CML, and that redox-directed therapy is worthy of further clinical investigations in CML.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adenovirus type 5 E1A gene products have numerous functions in cells, which serve as useful tools in studying the mechanisms of either oncogenesis or tumor suppression. To understand the mechanisms of E1A-mediated tumor suppression, we introduced an Ad5 E1A gene into murine melanoma cells, and characterized E1A-mediated biological functions both in vitro and in vivo. The results of the study indicated that: (i) Ad5 E1A mediated tumor suppression in rodent tumor cells; (ii) E1A-mediated tumor suppression is associated with E1A-mediated apoptosis in vivo.^ To determine which functional region(s) of E1A is(are) required for E1A-mediated apoptosis and whether E1A-mediated apoptosis is required for E1A-mediated tumor suppression, we established stable transfectants of E1A mutants, which have deletion mutation at either the N-terminal (p300-binding) or the CR2 (pRb-binding) domain or both, and then characterized biological functions both in vitro and in vivo. The results of the study indicate that the CR2 domain of E1A is required for E1A-mediated apoptosis, while the N-terminal domain of E1A is dispensable. Interestingly, either of the two domains is able to mediate tumor suppression, since mutant E1A with a single deletion at either domain still suppressed tumor growth. Importantly, deletion mutations at both the N-terminal and the CR2 domains of E1A abrogated E1A-mediated tumor suppression, suggesting both regions are required for E1A-mediated tumor suppression. The results demonstrate that E1A-mediated apoptosis is not the only mechanism for E1A-mediated tumor suppression. Thus, the N-terminal and CR2 domains of E1A mediated two independent mechanisms of tumor suppression.^ To understand the mechanism of E1A-mediated apoptosis, we examined the temporal relationship of molecular events during the apoptotic cascades after UV radiation and serum depletion in both the E1A-expressing cells and parental cells. Kinetic analysis of JNK activity indicates that the JNK pathway is greatly increased in response to UV light in E1A transfectants, suggesting that extracellular stress stimuli have been converted into intracellular stress signals with greater magnitude in E1A transfectants than those in parental cells. Thus, E1A-mediated sensitization precedes these events. As ceramide has been proposed as second messenger and upstream activator of JNK pathway for stress-induced apoptosis, we also examined the roles of ceramide in apoptosis and the relationship with JNK pathway. The results indicate that E1A transfectants do not have increased sensitivity to ceramide. Therefore, E1A-mediated sensitization to UV radiation cannot be attributed to an increased sensitivity to ceramide. Furthermore, UV-induced JNK activation correlates with UV-induced apoptosis, while lethal dose of ceramide does not activate JNK. Thus, activation of JNK pathway is independent of the ceramide pathway. In addition, E1A transfectants also have increased activation of NF-kB in response to UV. These results suggest that E1A-mediated sensitization is an early event which associates with conversion of extracellular stress stimuli into amplified intracellular signals. The mechanism of E1A-mediated sensitization and its relationship with other pathways are discussed. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have identified and characterized CLARP, a caspase-like apoptosis-regulatory protein. Sequence analysis revealed that human CLARP contains two amino-terminal death effector domains fused to a carboxyl-terminal caspase-like domain. The structure and amino acid sequence of CLARP resemble those of caspase-8, caspase-10, and DCP2, a Drosophila melanogaster protein identified in this study. Unlike caspase-8, caspase-10, and DCP2, however, two important residues predicted to be involved in catalysis were lost in the caspase-like domain of CLARP. Analysis with fluorogenic substrates for caspase activity confirmed that CLARP is catalytically inactive. CLARP was found to interact with caspase-8 but not with FADD/MORT-1, an upstream death effector domain-containing protein of the Fas and tumor necrosis factor receptor 1 signaling pathway. Expression of CLARP induced apoptosis, which was blocked by the viral caspase inhibitor p35, dominant negative mutant caspase-8, and the synthetic caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethylketone (zVAD-fmk). Moreover, CLARP augmented the killing ability of caspase-8 and FADD/MORT-1 in mammalian cells. The human clarp gene maps to 2q33. Thus, CLARP represents a regulator of the upstream caspase-8, which may play a role in apoptosis during tissue development and homeostasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurotoxicity induced by overstimulation of N-methyl-d-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1β-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Ink4a/Arf locus encodes p16Ink4a and p19Arf and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19Arf and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16Ink4a and p19Arf are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19Arf but not p16 Ink4a induced apoptosis in Ab-MLV-transformed pre-B cells, p19Arf appears to be responsible for these events. Consistent with the link between p19Arf and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19Arf is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19Arf–p53 regulatory loop plays an important role in lymphoma induction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expression of a number of human paired box-containing (PAX) genes has been correlated with various types of tumors. Novel fusion genes encoding chimeric fusion proteins have been found in the pediatric malignant tumor alveolar rhabdomyosarcoma (RMS). They are generated by two chromosomal translocations t(2;13) and t(1;13) juxtaposing PAX3 or PAX7, respectively, with a forkhead domain gene FKHR. Here we describe that specific down-regulation of the t(2;13) translocation product in alveolar RMS cells by antisense oligonucleotides results in reduced cellular viability. Cells of embryonal RMS, the other major histiotype of this tumor, were found to express either wild type PAX3 or PAX7 at elevated levels when compared with primary human myoblasts. Treatment of corresponding embryonal RMS cells with antisense olignucleotides directed against the mRNA translational start site of either one of these two transcription factors similarly triggers cell death, which is most likely due to induction of apoptosis. Retroviral mediated ectopic expression of mouse Pax3 in a PAX7 expressing embryonal RMS cell line could partially rescue antisense induced apoptosis. These data suggest that the PAX3/FKHR fusion gene and wild-type PAX genes play a causative role in the formation of RMS and presumably other tumor types, possibly by suppressing the apoptotic program that would normally eliminate these cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fas activation triggers apoptosis in many cell types. Studies with anti-Fas antibodies have produced conflicting results on Fas signaling, particularly the role of the Bcl-2 family in this process. Comparison between physiological ligand and anti-Fas antibodies revealed that only extensive Fas aggregation, by membrane bound FasL or aggregated soluble FasL consistently triggered apoptosis, whereas antibodies could act as death agonists or antagonists. Studies on Fas signaling in cell lines and primary cells from transgenic mice revealed that FADD/MORT1 and caspase-8 were required for apoptosis. In contrast, Bcl-2 or Bcl-xL did not block FasL-induced apoptosis in lymphocytes or hepatocytes, demonstrating that signaling for cell death induced by Fas and the pathways to apoptosis regulated by the Bcl-2 family are distinct.