993 resultados para hydrogen compounds
Resumo:
Background. Cisplatin (CP)-induced renal damage is associated with inflammation. Hydrogen sulphide (H(2)S) is involved in models of inflammation. This study evaluates the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H(2)S formation, on the renal damage induced by CP. Methods. The rats were injected with CP (5 mg/kg, i.p.) or PAG(5 mg/kg twice a day, i.p.) for 4 days, starting 1 h before CP injection. Control rats were injected with 0.15 M NaCl or PAG only. Blood and urine samples were collected 5 days after saline or CP injections for renal function evaluation. The kidneys were removed for tumour necrosis factor (TNF)-alpha quantification, histological, immunohistochemical and Western blot analysis. The cystathionine gamma-lyase (CSE) activity and expression were assessed. The direct toxicity of H(2)S in renal tubular cells was evaluated by the incubation of these cells with NaHS, a donor of H(2)S. Results. CP-treated rats presented increases in plasma creatinine levels and in sodium and potassium fractional excretions associated with tubulointerstitial lesions in the outer medulla. Increased expression of TNF-alpha, macrophages, neutrophils and T lymphocytes, associated with increased H(2)S formation rate and CSE expression, were also observed in the outer medulla from CP-injected rats. All these alterations were reduced by treatment with PAG. A direct toxicity of NaHS for renal tubular epithelial cells was not observed. Conclusions. Treatment with PAG reduces the renal damage induced by CP. This effect seems to be related to the H2S formation and the restriction of the inflammation in the kidneys from PAG+CP-treated rats.
Resumo:
The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (alpha = 0.05). In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth.
Resumo:
To evaluate the effect of low and highly concentrated bleaching agents on microhardness and surface roughness of bovine enamel and root dentin. According to a randomized complete block design, 100 specimens of each substrate were assigned into five groups to be treated with bleaching agents containing carbamide peroxide (CP) at 10% (CP10); hydrogen peroxide (HP) at 7.5% (HP7.5) or 38% (HP38), or the combination of 18% of HP and 22% of CP (HP18/CP22), for 3 weeks. The control group was left untreated. Specimens were immersed in artificial saliva between bleaching treatments. Knoop surface microhardness (SMH) and average surface roughness (Ra) were measured at baseline and post-bleaching conditions. For enamel, there were differences between bleaching treatments for both SMH and Ra measurements (p = 0.4009 and p = 0.7650, respectively). SMH significantly increased (p < 0.0001), whereas Ra decreased (p = 0.0207) from baseline to post-bleaching condition. For root dentin, the group treated with CP10 exhibited the significantly highest SMH value differing from those groups bleached with HP18/CP22, HP7.5, which did not differ from each other. Application of HP38 resulted in intermediate SMH values. No significant differences were found for Ra (p = 0.5975). Comparing the baseline and post-bleaching conditions, a decrease was observed in SMH (p < 0.0001) and an increase in Ra (p = 0.0063). Bleaching agents with varying concentrations of CP and/or HP are capable of causing mineral loss in root dentin. Enamel does not perform in such bleaching agent-dependent fashion when one considers either hardness or surface roughness evaluations. Bleaching did not alter the enamel microhardness and surface roughness, but in root dentin, microhardness seems to be dependent on the bleaching agent used.
Resumo:
Flash vacuum thermolysis of a large variety of heterocyclic compounds is a useful means of production of ketenes, ketenimines, thioketenes, allenes, iminopropadienones, bis(imino)propadienes, iminopropadienethiones, carbodiimides, isothiocyanates, acetylenes, fulminic acid, nitrile imines and nitrile ylides, nitriles, cyanamides, cyanates, and other compounds, often in preparatively useful yields.
Resumo:
A range of organohalogen compounds (10 polychlorinated biphenyl [PCB] congeners, DDT and metabolites, chlordane-related compounds, the potential natural organochlorine compound Q1, toxaphene, hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and several yet unidentified brominated compounds) were detected in the blubber of four bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis), and seven dugongs (Dugong dugon), as well as in adipose tissue of a green turtle (Chelonia mydas) and a python (Morelia spilota) from northeast Queensland (Australia). The green turtle and dugongs accumulated lower organohalogen levels than the dolphins. Lower levels in dugongs were expected because this species is exclusively herbivorous. Highest PCB and DDT levels recorded in dugongs were 209 and 173 mug/kg lipids, respectively. Levels of the nonanthropogenic heptachlorinated compound Q1 (highest level in dugongs was 160 mug/kg lipids) were estimated using the ECD response factor of trans-nonachlor. Highest organohalogen levels were found in blubber of dolphins for sumDDT (575-52,500 mug/kg) and PCBs (600-25,500 mug/kg lipids). Furthermore, Q1 was a major organohalogen detected in all samples analyzed, ranging from 450 -9,100 mug/kg lipids. The highest concentration of Q1 determined in this study represents the highest concentration reported to date in an environmental sample. Levels of chlordane-related compounds were also high (280-7,700 mug/kg, mainly derived from trans-nonachlor), but concentrations of hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and toxaphene were relatively low and contributed little to the overall organohalogen contamination. Furthermore, a series of three major (BC-1, BC-2, and BC-3) and six minor (BC-4 through BC-9) unknown brominated compounds were observable by extracting m/z 79 and m/z 81 from the GC/ECNI-MS full scan run. Structural proposals were made for the two major recalcitrant compounds (referred to as BC-1 and BC-2). BC-2 appears to be a tetrabromo-methoxy-diphenylether (512 u) and BC-1 has 14 u (corresponding with an additional CH2 group) more relative to BC-1. In general the organohalogen pattern observed in blubber of dolphins was different compared to similar samples from other locations in the world, which is apparent from the fact that the four major abundant signals in the GC/ECD chromatogram. of D. delphis originated from the four unknown compounds Q1, BC-1, BC-2, and BC-3.
Resumo:
Renal drug elimination is determined by glomerular filtration, tubular secretion, and tubular reabsorption. Changes in the integrity of these processes influence renal drug clearance, and these changes may not be detected by conventional measures of renal function such as creatinine clearance. The aim of the current study was to examine the analytic issues needed to develop a cocktail of marker drugs (fluconazole, rac-pindolol, para-aminohippuric acid, sinistrin) to measure simultaneously the mechanisms contributing to renal clearance. High-performance liquid chromatographic methods of analysis for fluconazole, pindolol, para-aminohippuric acid, and creatinine and an enzymatic assay for sinistrin were developed or modified and then validated to allow determination of each of the compounds in both plasma and urine in the presence of all other marker drugs. A pilot clinical study in one volunteer was conducted to ensure that the assays were suitable for quantitating all the marker drugs to the sensitivity and specificity needed to allow accurate determination of individual renal clearances. The performance of all assays (plasma and urine) complied with published validation criteria. All standard curves displayed linearity over the concentration ranges required, with coefficients of correlation greater than 0.99. The precision of the interday and intraday variabilities of quality controls for each marker in plasma and urine were all less than 11.9% for each marker. Recoveries of markers (and internal standards) in plasma and urine were all at least 90%. All markers investigated were shown to be stable when plasma or urine was frozen and thawed. For all the assays developed, there were no interferences from other markers or endogenous substances. In a pilot clinical study, concentrations of all markers could be accurately and reproducibly determined for a sufficient duration of time after administration to calculate accurate renal clearance for each marker. This article presents details of the analytic techniques developed for measuring concentrations of marker drugs for different renal elimination processes administered as a single dose to define the processes contributing to renal drug elimination.
Resumo:
Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.
Resumo:
Low-micromolar concentrations of sulfite, thiosulfate and sulfide, present in synthetic wastewater or anaerobic digester effluent, were quantified by means of derivatization with monobromobimane, followed by HPLC separation with fluorescence detection. The concentration of elemental sulfur was determined, after its extraction with chloroform from the derivatized sample, by HPLC with UV detection. Recoveries of sulfide (both matrices), and of thiosulfate and sulfite (synthetic wastewater) were between 98 and 103%. The in-run RSDs on separate derivatizations were 13 and 19% for sulfite (two tests), between 1.5 and 6.6% for thiosulfate (two tests) and between 4.1 and 7.7% for sulfide (three tests). Response factors for derivatives of sulfide and thiosulfate, but not sulfite, were steady over a 13-month period during which 730 samples were analysed. Dithionate and tetrathionate did not seem to be detectable with this method. The distinctness of the elemental sulfur and the derivatizing-agent peaks was improved considerably by detecting elution at 297 instead of 263 nm. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The synthesis, characterization and copper(II) coordination chemistry of three new cyclic peptide ligands, PatJ(1) (cyclo-(Ile -Thr- (Gly)Thz-lle-Thr(Gly)Thz)), PatJ(2) (cyclo-(Ile-Thr(Gly)Thz-(D)-Ile-Thr-(Gly)Thz)), and PatL (cyclo-(Ile-Ser-(Gly)Thz-Ile-Ser(Gly)Thz)) are reported. All of these cyclic peptides and PatN (cyclo-(Ile-Ser(Gly)Thz-Ile-Thr-(Gly)Thz)) are derivatives of patellamide A and have a [24]azacrown-8 macrocyclic structure. All four synthetic cyclic peptides have two thiazole rings but, in contrast to patellamide A, no oxazoline rings. The molecular structure of PatJ1, determined by X-ray crystallography, has a saddle conformation with two close-to-co-parallel thiazole rings, very similar to the geometry of patellamide D. The two coordination sites of PatJ1 with thiazole-N and amide-N donors are each well preorganized for transition metal ion binding. The coordination of copper(II) was monitored by UV/Vis spectroscopy, and this reveals various (meta)stable mono- and dinuclear copper(II) complexes whose stoichiometry was confirmed by mass spectra. Two types of dinuclear copper(II) complexes, [Cu-2(H4L)(OH2)(n)](2+) (n = 6, 8) and [Cu-2(H4L)(OH2)(n)] (n=4, 6; L=PatN, PatL, PatJ1, PatJ2) have been identified and analyzed structurally by EPR spectroscopy and a combination of spectra simulations and molecular mechanics calculations (MM-EPR). The four structures are similar to each other and have a saddle conformation, that is, derived from the crystal structure of PatJ(1) by a twist of the two thiozole rings. The small but significant structural differences are characterized by the EPR simulations.
Resumo:
Using the B3LYP/6-31G* ab initio method, we have studied the rotation about the C=C bonds in 15 push-pull ethylenes of the general formula (X,Y)C=C(CHO)(2) [X, Y = NH2, NHCH3, N(CH3)(2), OCH3, SCH3] in the gas phase. Two stationary points (minimum and transition state) were located for all compounds. The geometry, dipole moments, natural bond orbital atomic charges, as well as the rotational barriers were examined. The torsion angle 0 depends essentially on the presence or absence of intramolecular hydrogen bonds, and the barrier is a function of the torsion angle. (C) 2002 Elsevier Science B.V. All rights reserved.