897 resultados para historical of malaria
Resumo:
The clinical records of 432 P. falciparum and P. vivax infected volunteer male inmates of the Maryland House of Corrections in Jessup, Maryland, were studied to determine (1) the clinical and parasitologic courses of infections in both parasite species, and (2) the influence of previous homologous and/or heterologous strain exposures on subsequent infections. The clinical and parasitologic courses of infection with both P. falciparum and P. vivax species indicated that: (a) there were characteristic strain related differences between P. falciparum and P. vivax. P. falciparum strains were more apt to cause severe infections than P. vivax strains. (b) Blood-induced infections produced significantly shorter prepatent and incubation periods than mosquito-induced. (c) Blacks tolerated the infections better than whites and, (d) homologous and heterologous strain immunities persisted with previous malaria history. In previously exposed cases, clinical manifestations were moderate, peak fever lowered, and peak parasitemias limited. (e) Anti-malarial drugs were effective in reducing sexual and asexual forms of the malaria parasite, and limiting peak fevers, irrespective of method of induction, race, parasite strain and species, and drug type used.^ Given these findings, and the current worldwide resurgence of malaria, this study has major implications in terms of setting malaria control and public health policies in both developed and developing countries.^
Resumo:
Background: There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective: This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods: The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results: Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite counting accuracy for all players as a function of the number of games considered and the experience of the players. In addition, we propose a mathematical equation that accurately models the collective parasite counting performance. Conclusions: This research validates the online gaming approach for crowdsourced counting of malaria parasites in images of thick blood films. The findings support the conclusion that nonexperts are able to rapidly learn how to identify the typical features of malaria parasites in digitized thick blood samples and that combining the analyses of several users provides similar parasite counting accuracy rates as those of expert microscopists. This experiment illustrates the potential of the crowdsourced gaming approach for performing routine malaria parasite quantification, and more generally for solving biomedical image analysis problems, with future potential for telediagnosis related to global health challenges.
Resumo:
Sequestration of malaria-infected erythrocytes in the peripheral circulation has been associated with the virulence of Plasmodium falciparum. Defining the adhesive phenotypes of infected erythrocytes may therefore help us to understand how severe disease is caused and how to prevent or treat it. We have previously shown that malaria-infected erythrocytes may form apparent autoagglutinates of infected erythrocytes. Here we show that such autoagglutination of a laboratory line of P. falciparum is mediated by platelets and that the formation of clumps of infected erythrocytes and platelets requires expression of the platelet surface glycoprotein CD36. Platelet-dependent clumping is a distinct adhesive phenotype, expressed by some but not all CD36-binding parasite lines, and is common in field isolates of P. falciparum. Finally, we have established that platelet-mediated clumping is strongly associated with severe malaria. Precise definition of the molecular basis of this intriguing adhesive phenotype may help to elucidate the complex pathophysiology of malaria.
Resumo:
The lack of efficient mechanisms for stable genetic transformation of medically important insects, such as anopheline mosquitoes, is the single most important impediment to progress in identifying novel control strategies. Currently available techniques for foreign gene expression in insect cells in culture lack the benefit of stable inheritance conferred by integration. To overcome this problem, a new class of pantropic retroviral vectors has been developed in which the amphotropic envelope is completely replaced by the G glycoprotein of vesicular stomatitis virus. The broadened host cell range of these particles allowed successful entry, integration, and expression of heterologous genes in cultured cells of Anopheles gambiae, the principle mosquito vector responsible for the transmission of over 100 million cases of malaria each year. Mosquito cells in culture infected with a pantropic vector expressing hygromycin phosphotransferase from the Drosophila hsp70 promoter were resistant to the antibiotic hygromycin B. Integrated provirus was detected in infected mosquito cell clones grown in selective media. Thus, pantropic retroviral vectors hold promise as a transformation system for mosquitoes in vivo.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Tafenoquine is an 8-aminoquiniline related to primaquine with preclinical activity against a range of malaria species. We treated two acute cases of vivax malaria with tafenoquine (800 mg over three days) atone, instead of conventional chloroquine (1500 mg over three days) and primaquine (420 mg over 14 days). In addition to the convenience of this regimen, the rapid parasite clearances observed, coupled with a good clinical response and lack of recrudescence or relapse, indicate that further investigation of tafenoquine in the treatment of vivax malaria is warranted. (C) 2004 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Parasite resistance to antimalarial drugs is a serious threat to human health, and novel agents that act on enzymes essential for parasite metabolism, such as proteases, are attractive targets for drug development. Recent studies have shown that clinically utilized human immunodeficiency virus (HIV) protease inhibitors can inhibit the in vitro growth of Plasmodium falciparum at or below concentrations found in human plasma after oral drug administration. The most potent in vitro antimalarial effects have been obtained for parasites treated with saquinavir, ritonavir, or lopinavir, findings confirmed in this study for a genetically distinct P. falciparum line (3D7). To investigate the potential in vivo activity of antiretroviral protease inhibitors (ARPIs) against malaria, we examined the effect of ARPI combinations in a murine model of malaria. In mice infected with Plasmodium chabaudi AS and treated orally with ritonavir-saquinavir or ritonavir-lopinavir, a delay in patency and a significant attenuation of parasitemia were observed. Using modeling and ligand docking studies we examined putative ligand binding sites of ARPIs in aspartyl proteases of P. falciparum (plasmepsins II and IV) and P. chabaudi (plasmepsin) and found that these in silico analyses support the antimalarial activity hypothesized to be mediated through inhibition of these enzymes. In addition, in vitro enzyme assays demonstrated that P. falciparum plasmepsins II and IV are both inhibited by the ARPIs saquinavir, ritonavir, and lopinavir. The combined results suggest that ARPIs have useful antimalarial activity that may be especially relevant in geographical regions where HIV and P. falciparum infections are both endemic.
Resumo:
The growing problem of drug resistance has greatly complicated the treatment for falciparum malaria. Whereaschloroquine and sulfadoxine/ pyrimethamine could once cure most infections, this is no longer true and requiresexamination of alternative regimens. Not all treatment failures are drug resistant and other issues such asexpired antimalarials and patient compliance need to be considered. Continuation of a failing treatment policyafter drug resistance is established suppresses infections rather than curing them, leading to increasedtransmission of malaria, promotion of epidemics and loss of public confidence in malaria control programs.Antifolate drug resistance (i.e. pyrimethamine) means that new combinations are urgently needed particularlybecause addition of a single drug to an already failing regimen is rarely effective for very long. Atovaquone/proguanil and mefloquine have been used against multiple drug resistant falciparum malaria with resistance toeach having been documented soon after drug introduction. Drug combinations delay further transmission ofresistant parasites by increasing cure rates and inhibiting formation of gametocytes. Most currentlyrecommended drug combinations for falciparum malaria are variants of artemisinin combination therapy wherea rapidly acting artemisinin compound is combined with a longer half-life drug of a different class. Artemisininsused include dihydroartemisinin, artesunate, artemether and companion drugs include mefloquine, amodiaquine,sulfadoxine/ pyrimethamine, lumefantrine, piperaquine, pyronaridine, chlorproguanil/dapsone. The standard ofcare must be to cure malaria by killing the last parasite. Combination antimalarial treatment is vital not only tothe successful treatment of individual patients but also for public health control of malaria.
Resumo:
Objective. This study aims to provide a better understanding of the amounts spent on different malaria prevention products and the determinants of these expenditures. Methods. 1,601 households were interviewed about their expenditure on malaria mosquito nets in the past five years, net re-treatments in the past six months and other expenditures prevention in the past two weeks. Simple random sampling was used to select villages and streets while convenience sampling was used to select households. Expenditure was compared across bed nets, aerosols, coils, indoor spraying, using smoke, drinking herbs and cleaning outside environment. Findings. 68% of households owned at least one bed net and 27% had treated their nets in the past six months. 29% were unable to afford a net. Every fortnight, households spent an average of US $0.18 on nets and their treatment, constituting about 47% of total prevention expenditure. Sprays, repellents and coils made up 50% of total fortnightly expenditure (US$0.21). Factors positively related to expenditure were household wealth, years of education of household head, household head being married and rainy season. Poor quality roads and living in a rural area had a negative impact on expenditure. Conclusion. Expenditure on bed nets and on alternative malaria prevention products was comparable. Poor households living in rural areas spend significantly less on all forms of malaria prevention compared to their richer counterparts. Breaking the cycle between malaria and poverty is one of the biggest challenges facing malaria control programmes in Africa.
Resumo:
Though significant progress has been made through control efforts in recent years, malaria remains a leading cause of morbidity and mortality throughout the world, with 3.2 billion people at risk of developing the disease. Zanzibar is currently pursuing malaria elimination through the Zanzibar Malaria Elimination Program (ZAMEP), and is working toward a goal of no locally acquired malaria cases by 2018. A comprehensive and well functioning malaria surveillance program is central to achieving this goal. Under ZAMEP’s current surveillance strategy, District Malaria Surveillance Officers (DMSOs) respond to malaria case notifications through the reactive case detection (RACD) system. Three malaria screening and treatment strategies are undertaken in response to this system, including household-level (HSaT), focal-level (FSaT), and mass-level (MSaT). Each strategy is triggered by a different case threshold and tests different-sized populations. The aims of this study were to (1) assess the cost effectiveness of three malaria screening and treatment strategies; (2) assess the timeliness and completeness of ZAMEP’s RACD system; (3) and qualitatively explore the roles of DMSOs.
Screening disposition and budget information for 2014 screening and treatment strategies was analyzed to determine prevalence rates in screened populations and the cost effectiveness of each strategy. Prevalence rates within the screened population varied by strategy: 6.1 percent in HSaT, 1.2 percent in FSaT, and 0.9 percent in MSaT. Of the various costing scenarios considering cost per person screened, MSaT was the most cost-effective, with costs ranging from $9.57 to $12.57 per person screened. Of the various costing scenarios considering cost per case detected, HSaT was the most cost-effective, at $385.51 per case detected.
Case data from 2013 through mid-2015 was used to assess the timeliness and completeness of the RACD system. The average number of RACD activities occurring within 48 hours of notification improved slightly between 2013 and the first half of 2015, from 90.7 percent to 93.1 percent. The average percentage of household members screened during RACD also increased over the same time period, from 84 percent in 2013 to 89.9 percent in the first half of 2015.
Interviews with twenty DMSOs were conducted to gain insights into the challenges to malaria elimination both from the health system and the community perspectives. Major themes discussed in the interviews include the need for additional training, inadequate information capture at health facility, resistance to household testing, transportation difficulties, inadequate personnel during the high transmission season, and community misinformation.
Zanzibar is now considered a low transmission setting, making elimination feasible, but also posing new challenges to achieving this goal. The findings of this study provide insight into how surveillance activities can be improved to support the goal of malaria elimination in Zanzibar. Key changes include reevaluating the use of MSaT activities, improving information capture at health facilities, hiring additional DMSOs during the high transmission season, and improving community communication.
Resumo:
The ABO and Rhesus blood group systems are very important clinical tools that are commonly used in blood transfusion and their associations with various disease conditions have been widely reported. This study investigated the distribution of these blood group systems and assessed the association of malaria infection with the ABO blood groups among children in Federal Capital Territory, Abuja. Blood specimens from deep finger pricks of 730 children aged between 0-2 years were examined for malaria parasites using Field stains method. ABO and Rhesus blood group antigens tests were also performed using standard tile protocols. Of all the children admitted into the study, 445 were sick while 285 were apparently healthy. The prevalence of malaria parasites was significantly higher (P = 0.00047) among the sick children (69.8%) than the apparently healthy children (30.2%). The most prevalent blood group was O (55.7%) and the Rhesus D antigen was positive for 98.4% of all the children. The prevalence of blood group B among the sick children was significantly lower (P = 0.00373) than the other blood group types. There is no association between malaria infection and ABO blood groups but the prevalence of higher malaria parasite density was significantly greater (P = 0.0404) in children with blood group A (7.7%). In conclusion, blood group O was the most prevalent blood group in the study and children with blood group A appeared to be more susceptible to higher level of malaria parasitemia.
Resumo:
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Resumo:
INTRODUCTION: Study of the temporal activity of malaria vectors during the implantation of a hydroelectric power station on the River Paraná, intended to generate electrical energy. The river separates the States of São Paulo and Mato Grosso do Sul, in Brazil. The objective was to verify whether alterations occurred in the wealth and diversity indices of Anopheles, following two successive floods, extended to the temporal activity and nycthemeral rhythm followed over a five year period. METHODS: Mosquito capture was performed monthly using the Human Attraction Technique and Shannon Traps. The first, executed for 24h, provided the nycthemeral rhythm and the second, lasting 15h, permitted the tracking of Anopheles during the two floods. RESULTS: The bimodal pattern of Anopheles darlingi defined before these floods was modified throughout the environment interventions. The same effect had repercussions on the populations of An albitarsis s.l., An triannulatus and An galvaoi. Activity prior to twilight was less affected by the environment alterations. CONCLUSIONS: The dam construction provoked changes in Anopheles temporal activity patterns, permitting classification of the area as an ecologically steady and unstable situation. Differences observed in Anopheles behavior due to the capture methods revealed the influence of solo and multiple attractiveness inside the populations studied.
Resumo:
The Anopheles (Nyssorhynchus) albitarsis complex includes six species: An. albitarsis, Anopheles oryzalymnetes Wilkerson and Motoki, n. sp., Anopheles marajoara, Anopheles dencorum, Anopheles janconnae Wilkerson and Sallum, n. sp., and An. albitarsis F. Except for An. deancorum, species of the complex are indistinguishable when only using morphology. The problematic distinction among species of the complex has made study of malaria transmission and ecology of An. albitarsis s.l. difficult. Consequently, involvement of species of the An. albitarsis complex in human Plasmodium transmission is not clear throughout its distribution range. With the aim of clarifying the taxonomy of the above species, with the exception of An. albitarsis F, we present comparative morphological and morphometric analyses, morphological redescriptions of three species and descriptions of two new species using individuals from populations in Brazil, Paraguay, Argentina and Venezuela. The study included characters from adult females, males, fourth-instar larvae, pupae and male genitalia of An. albitarsis, An. deaneorum and An. oryzalimnetes n. sp. For An. janconnae n. sp. only characters of the female, male and male genitalia were analysed. Fourth-instar larvae and pupae and male genitalia characteristics of all five species are illustrated. Bionomics and distribution data are given based on published literature records
Resumo:
Background: The Atlantic rainforest ecosystem, where bromeliads are abundant, provides an excellent environment for Kerteszia species, because these anophelines use the axils of those plants as larval habitat. Anopheles (K.) cruzii and Anopheles (K.) bellator are considered the primary vectors of malaria in the Atlantic forest. Although the incidence of malaria has declined in some areas of the Atlantic forest, autochthonous cases are still registered every year, with Anopheles cruzii being considered to be a primary vector of both human and simian Plasmodium. Methods: Recent publications that addressed ecological aspects that are important for understanding the involvement of Kerteszia species in the epidemiology of malaria in the Atlantic rainforest in the Neotropical Region were analysed. Conclusion: The current state of knowledge about Kerteszia species in relation to the Atlantic rainforest ecosystem was discussed. Emphasis was placed on ecological characteristics related to epidemiological aspects of this group of mosquitoes. The main objective was to investigate biological aspects of the species that should be given priority in future studies