932 resultados para heterogeneous polymerization
Resumo:
In this paper we estimate nominal and standardized shrimping effort in the Gulf of Mexico for the years 1965 through 1993. We accomplish this by first developing a standardization method (model) and then an expansion method (model). The expansion model estimates nominal days fished for noninterview landings data. The standardization model converts nominal days fished to standard days fished. We then characterize the historical trends of the penaeid shrimp fishery byvessel configuration, relative fishing power, and nominal and standardized effort. Wherever possible, we provide comparison with previous estimates by the National Marine Fisheries Service, NOAA.
Resumo:
Cluster analysis of ranking data, which occurs in consumer questionnaires, voting forms or other inquiries of preferences, attempts to identify typical groups of rank choices. Empirically measured rankings are often incomplete, i.e. different numbers of filled rank positions cause heterogeneity in the data. We propose a mixture approach for clustering of heterogeneous rank data. Rankings of different lengths can be described and compared by means of a single probabilistic model. A maximum entropy approach avoids hidden assumptions about missing rank positions. Parameter estimators and an efficient EM algorithm for unsupervised inference are derived for the ranking mixture model. Experiments on both synthetic data and real-world data demonstrate significantly improved parameter estimates on heterogeneous data when the incomplete rankings are included in the inference process.
Resumo:
It is shown in the paper how robustness can be guaranteed for consensus protocols with heterogeneous dynamics in a scalable and decentralized way i.e. by each agent satisfying a test that does not require knowledge of the entire network. Random graph examples illustrate that the proposed certificates are not conservative for classes of large scale networks, despite the heterogeneity of the dynamics, which is a distinctive feature of this work. The conditions hold for symmetric protocols and more conservative stability conditions are given for general nonsymmetric interconnections. Nonlinear extensions in an IQC framework are finally discussed. Copyright © 2005 IFAC.
Resumo:
In this paper we consider a network that is trying to reach consensus over the occurrence of an event while communicating over Additive White Gaussian Noise (AWGN) channels. We characterize the impact of different link qualities and network connectivity on consensus performance by analyzing both the asymptotic and transient behaviors. More specifically, we derive a tight approximation for the second largest eigenvalue of the probability transition matrix. We furthermore characterize the dynamics of each individual node. © 2009 AACC.
Resumo:
We consider a large scale network of interconnected heterogeneous dynamical components. Scalable stability conditions are derived that involve the input/output properties of individual subsystems and the interconnection matrix. The analysis is based on the Davis-Wielandt shell, a higher dimensional version of the numerical range with important convexity properties. This can be used to allow heterogeneity in the agent dynamics while relaxing normality and symmetry assumptions on the interconnection matrix. The results include small gain and passivity approaches as special cases, with the three dimensional shell shown to be inherently connected with corresponding graph separation arguments. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
This paper presents a heterogeneous reconfigurable system for real-time applications applying particle filters. The system consists of an FPGA and a multi-threaded CPU. We propose a method to adapt the number of particles dynamically and utilise the run-time reconfigurability of the FPGA for reduced power and energy consumption. An application is developed which involves simultaneous mobile robot localisation and people tracking. It shows that the proposed adaptive particle filter can reduce up to 99% of computation time. Using run-time reconfiguration, we achieve 34% reduction in idle power and save 26-34% of system energy. Our proposed system is up to 7.39 times faster and 3.65 times more energy efficient than the Intel Xeon X5650 CPU with 12 threads, and 1.3 times faster and 2.13 times more energy efficient than an NVIDIA Tesla C2070 GPU. © 2013 Springer-Verlag.