895 resultados para hand drawing
Resumo:
In gesture and sign language video sequences, hand motion tends to be rapid, and hands frequently appear in front of each other or in front of the face. Thus, hand location is often ambiguous, and naive color-based hand tracking is insufficient. To improve tracking accuracy, some methods employ a prediction-update framework, but such methods require careful initialization of model parameters, and tend to drift and lose track in extended sequences. In this paper, a temporal filtering framework for hand tracking is proposed that can initialize and reset itself without human intervention. In each frame, simple features like color and motion residue are exploited to identify multiple candidate hand locations. The temporal filter then uses the Viterbi algorithm to select among the candidates from frame to frame. The resulting tracking system can automatically identify video trajectories of unambiguous hand motion, and detect frames where tracking becomes ambiguous because of occlusions or overlaps. Experiments on video sequences of several hundred frames in duration demonstrate the system's ability to track hands robustly, to detect and handle tracking ambiguities, and to extract the trajectories of unambiguous hand motion.
Resumo:
Ongoing work towards appearance-based 3D hand pose estimation from a single image is presented. A large database of synthetic hand views is generated using a 3D hand model and computer graphics. The views display different hand shapes as seen from arbitrary viewpoints. Each synthetic view is automatically labeled with parameters describing its hand shape and viewing parameters. Given an input image, the system retrieves the most similar database views, and uses the shape and viewing parameters of those views as candidate estimates for the parameters of the input image. Preliminary results are presented, in which appearance-based similarity is defined in terms of the chamfer distance between edge images.
Resumo:
An appearance-based framework for 3D hand shape classification and simultaneous camera viewpoint estimation is presented. Given an input image of a segmented hand, the most similar matches from a large database of synthetic hand images are retrieved. The ground truth labels of those matches, containing hand shape and camera viewpoint information, are returned by the system as estimates for the input image. Database retrieval is done hierarchically, by first quickly rejecting the vast majority of all database views, and then ranking the remaining candidates in order of similarity to the input. Four different similarity measures are employed, based on edge location, edge orientation, finger location and geometric moments.
Resumo:
Locating hands in sign language video is challenging due to a number of factors. Hand appearance varies widely across signers due to anthropometric variations and varying levels of signer proficiency. Video can be captured under varying illumination, camera resolutions, and levels of scene clutter, e.g., high-res video captured in a studio vs. low-res video gathered by a web cam in a user’s home. Moreover, the signers’ clothing varies, e.g., skin-toned clothing vs. contrasting clothing, short-sleeved vs. long-sleeved shirts, etc. In this work, the hand detection problem is addressed in an appearance matching framework. The Histogram of Oriented Gradient (HOG) based matching score function is reformulated to allow non-rigid alignment between pairs of images to account for hand shape variation. The resulting alignment score is used within a Support Vector Machine hand/not-hand classifier for hand detection. The new matching score function yields improved performance (in ROC area and hand detection rate) over the Vocabulary Guided Pyramid Match Kernel (VGPMK) and the traditional, rigid HOG distance on American Sign Language video gestured by expert signers. The proposed match score function is computationally less expensive (for training and testing), has fewer parameters and is less sensitive to parameter settings than VGPMK. The proposed detector works well on test sequences from an inexpert signer in a non-studio setting with cluttered background.
Resumo:
A system for recovering 3D hand pose from monocular color sequences is proposed. The system employs a non-linear supervised learning framework, the specialized mappings architecture (SMA), to map image features to likely 3D hand poses. The SMA's fundamental components are a set of specialized forward mapping functions, and a single feedback matching function. The forward functions are estimated directly from training data, which in our case are examples of hand joint configurations and their corresponding visual features. The joint angle data in the training set is obtained via a CyberGlove, a glove with 22 sensors that monitor the angular motions of the palm and fingers. In training, the visual features are generated using a computer graphics module that renders the hand from arbitrary viewpoints given the 22 joint angles. We test our system both on synthetic sequences and on sequences taken with a color camera. The system automatically detects and tracks both hands of the user, calculates the appropriate features, and estimates the 3D hand joint angles from those features. Results are encouraging given the complexity of the task.
Resumo:
Submission on behalf of UCC to the Government Consultation on the White paper on Irish Aid
Resumo:
While people in Catholic parishes in Ireland appear keenly aware of parish boundaries, these understandings are more often oral than cartographic. There is no digital map of all of the Catholic parishes in Ireland. However, the institutional Catholic Church insists that no square kilometre can exist outside of a parish boundary. In this paper, I explain a process whereby the Catholic parishes of Ireland were produced digitally. I will outline some of the technical challenges of digitizing such boundaries. In making these maps, it is not only a question of drawing lines but mapping people’s understanding of their locality. Through an example of one part of the digitisation project, I want to talk about how verifying maps with local people often complicates something which may have at first sight seemed simple. The paper ends on a comparison with how other communities of interest are territorialised in Ireland and elsewhere to draw out some broader theoretical and theological issues of concern.
Resumo:
In order to present visual art as a paradigm for philosophy, Merleau-Ponty investigated the creative processes of artists whose work corresponded closely with his philosophical ideas. His essays on art are widely valued for emphasising process over product, and for challenging the primacy of the written word in all spheres of human expression. While it is clear that he initially favoured painting, Merleau-Ponty began to develop a much deeper understanding of the complexities of how art is made in his late work in parallel with his advancement of a new ontology. Although his ontology remains unfinished and only exists as working notes and a manuscript entitled The Visible and Invisible, Merleau-Ponty had begun to appreciate the fundamental role drawing plays in the making of art and the creation of a language of expression that is as vital as the written or spoken word. Through an examination of Merleau-Ponty’s unfinished manuscript and working notes my thesis will investigate his working methods and use of materials and also explore how he processed his ideas by using my own art practice as the basis of my research. This research will take the form of an inquiry into how the unfinished and incomplete nature of text and artworks, while they are still ‘works in progress’, can often reveal the more human and carnal components of creative processes. Applying my experience as a practitioner and a teacher in an art school, I focus on the significance of drawing practice for Merleau-Ponty’s later work, in order to rebalance an overemphasis on painting in the literature. Understanding the differences between these two art forms, and how they are taught, can offer an alternative engagement with Merleau-Ponty’s later work and his struggle to find a language to express his developing new ontology. In addition, by re-reading his work through the language of drawing, I believe we gain new insights which reaffirm Merleau-Ponty's relevance to contemporary art making and aesthetics.
Resumo:
Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.
Resumo:
BACKGROUND: Hand hygiene noncompliance is a major cause of nosocomial infection. Nosocomial infection cost data exist, but the effect of hand hygiene noncompliance is unknown. OBJECTIVE: To estimate methicillin-resistant Staphylococcus aureus (MRSA)-related cost of an incident of hand hygiene noncompliance by a healthcare worker during patient care. DESIGN: Two models were created to simulate sequential patient contacts by a hand hygiene-noncompliant healthcare worker. Model 1 involved encounters with patients of unknown MRSA status. Model 2 involved an encounter with an MRSA-colonized patient followed by an encounter with a patient of unknown MRSA status. The probability of new MRSA infection for the second patient was calculated using published data. A simulation of 1 million noncompliant events was performed. Total costs of resulting infections were aggregated and amortized over all events. SETTING: Duke University Medical Center, a 750-bed tertiary medical center in Durham, North Carolina. RESULTS: Model 1 was associated with 42 MRSA infections (infection rate, 0.0042%). Mean infection cost was $47,092 (95% confidence interval [CI], $26,040-$68,146); mean cost per noncompliant event was $1.98 (95% CI, $0.91-$3.04). Model 2 was associated with 980 MRSA infections (0.098%). Mean infection cost was $53,598 (95% CI, $50,098-$57,097); mean cost per noncompliant event was $52.53 (95% CI, $47.73-$57.32). A 200-bed hospital incurs $1,779,283 in annual MRSA infection-related expenses attributable to hand hygiene noncompliance. A 1.0% increase in hand hygiene compliance resulted in annual savings of $39,650 to a 200-bed hospital. CONCLUSIONS: Hand hygiene noncompliance is associated with significant attributable hospital costs. Minimal improvements in compliance lead to substantial savings.
Resumo:
Human and non-human animals tend to avoid risky prospects. If such patterns of economic choice are adaptive, risk preferences should reflect the typical decision-making environments faced by organisms. However, this approach has not been widely used to examine the risk sensitivity in closely related species with different ecologies. Here, we experimentally examined risk-sensitive behaviour in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), closely related species whose distinct ecologies are thought to be the major selective force shaping their unique behavioural repertoires. Because chimpanzees exploit riskier food sources in the wild, we predicted that they would exhibit greater tolerance for risk in choices about food. Results confirmed this prediction: chimpanzees significantly preferred the risky option, whereas bonobos preferred the fixed option. These results provide a relatively rare example of risk-prone behaviour in the context of gains and show how ecological pressures can sculpt economic decision making.
Resumo:
"Im Zuge der weiteren Verbreitung der Social Media und der internetbasierten Lehre, gewinnen eLearning Inhalte immer mehr an Bedeutung. In den Kontext von eLearning und internetbasierter Lehre gehören auch Open Educational Resources (OER). OER sind digitale Lern- und Lehrmaterialien, die frei für Lehrende und Studierende zugänglich sind und auch frei verbreitet werden dürfen. [...] Um OER auszutauschen, zu finden, zu beschaffen und sie auf einer breiten Basis zugänglich zu machen, insbesondere auch über Suchmaschinen und dadurch verwenden zu können, werden für die jeweiligen Materialien Metadaten benötigt. [...] Um die Frage nach dem Handlungs- und Forschungsbedarf zum Thema Metadaten für Open Educational Resources zu untersuchen, wird zunächst ein Überblick über die momentan bestehenden nationalen und internationalen Metadatenstandards für eLearning Objekte gegeben. [...] Hieraus ergeben sich Empfehlungen, welche Metadaten-Standards für die weitere Nutzung und Förderung geeignet sein könnten. Es werden außerdem die Möglichkeiten der Erstellung eines neuen Metadaten-Standards sowie eines gemeinsamen Portals für OER erörtert. Hierbei wird vor allem auf die zu erwartenden Probleme und die damit verbundenen Anforderungen eingegangen." (DIPF/Orig.)
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel technique combined with a force-directed placement algorithm. The multilevel process groups vertices to form clusters, uses the clusters to define a new graph and is repeated until the graph size falls below some threshold. The coarsest graph is then given an initial layout and the layout is successively refined on all the graphs starting with the coarsest and ending with the original. In this way the multilevel algorithm both accelerates and gives a more global quality to the force- directed placement. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on a number of examples ranging from 500 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 30 seconds for a 10,000 vertex graph to around 10 minutes for the largest graph. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
The author's approach to teaching an integrative unit to a small group of master’s level Applied Statistics students in 2000-2001 is described. Details of the various activities such as data analysis, reading and discussion of papers, and training in consultancy skills are given, as also are details of the assessment. The students’ and lecturer’s views of the unit are discussed.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel framework combined with a force-directed placement algorithm. The multilevel technique matches and coalesces pairs of adjacent vertices to define a new graph and is repeated recursively to create a hierarchy of increasingly coarse graphs, G0, G1, …, GL. The coarsest graph, GL, is then given an initial layout and the layout is refined and extended to all the graphs starting with the coarsest and ending with the original. At each successive change of level, l, the initial layout for Gl is taken from its coarser and smaller child graph, Gl+1, and refined using force-directed placement. In this way the multilevel framework both accelerates and appears to give a more global quality to the drawing. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on examples ranging in size from 10 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 12 seconds for a 10,000 vertex graph to around 5-7 minutes for the largest graphs. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.