957 resultados para gram negative bacterium


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Filamentous bacterial cells often provide biological information that is not readily evident in normal-size cells. In this study, the effect of cellular filamentation on gliding motility of Myxococcus xanthus, a Gram-negative social bacterium, was investigated. Elongation of the cell body had different effects on adventurous and social motility of M. xanthus. The rate of A-motility was insensitive to cell-body elongation whereas the rate of S-motility was reduced dramatically as the cell body got longer, indicating that these two motility systems work in different ways. The study also showed that filamentous wild-type cells glide smoothly with relatively straight, long cell bodies. However, filamentous cells of certain social motility mutants showed zigzag, tangled cell bodies on a solid surface, apparently a result of a lack of coordination between different fragments within the filaments. Further genetic and biochemical analyses indicated that the uncoordinated movements of these mutant filaments were correlated with the absence of cell surface fibril materials, indicating a possible new function for fibrils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(4-vinyl-N-alkylpyridinium bromide) was covalently attached to glass slides to create a surface that kills airborne bacteria on contact. The antibacterial properties were assessed by spraying aqueous suspensions of bacterial cells on the surface, followed by air drying and counting the number of cells remaining viable (i.e., capable of growing colonies). Amino glass slides were acylated with acryloyl chloride, copolymerized with 4-vinylpyridine, and N-alkylated with different alkyl bromides (from propyl to hexadecyl). The resultant surfaces, depending on the alkyl group, were able to kill up to 94 ± 4% of Staphylococcus aureus cells sprayed on them. A surface alternatively created by attaching poly(4-vinylpyridine) to a glass slide and alkylating it with hexyl bromide killed 94 ± 3% of the deposited S. aureus cells. On surfaces modified with N-hexylated poly(4-vinylpyridine), the numbers of viable cells of another Gram-positive bacterium, Staphylococcus epidermidis, as well as of the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, dropped more than 100-fold compared with the original amino glass. In contrast, the number of viable bacterial cells did not decline significantly after spraying on such common materials as ceramics, plastics, metals, and wood.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recently sequenced genome of the parasitic bacterium Mycoplasma genitalium contains only 468 identified protein-coding genes that have been dubbed a minimal gene complement [Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., et al. (1995) Science 270, 397-403]. Although the M. genitalium gene complement is indeed the smallest among known cellular life forms, there is no evidence that it is the minimal self-sufficient gene set. To derive such a set, we compared the 468 predicted M. genitalium protein sequences with the 1703 protein sequences encoded by the other completely sequenced small bacterial genome, that of Haemophilus influenzae. M. genitalium and H. influenzae belong to two ancient bacterial lineages, i.e., Gram-positive and Gram-negative bacteria, respectively. Therefore, the genes that are conserved in these two bacteria are almost certainly essential for cellular function. It is this category of genes that is most likely to approximate the minimal gene set. We found that 240 M. genitalium genes have orthologs among the genes of H. influenzae. This collection of genes falls short of comprising the minimal set as some enzymes responsible for intermediate steps in essential pathways are missing. The apparent reason for this is the phenomenon that we call nonorthologous gene displacement when the same function is fulfilled by nonorthologous proteins in two organisms. We identified 22 nonorthologous displacements and supplemented the set of orthologs with the respective M. genitalium genes. After examining the resulting list of 262 genes for possible functional redundancy and for the presence of apparently parasite-specific genes, 6 genes were removed. We suggest that the remaining 256 genes are close to the minimal gene set that is necessary and sufficient to sustain the existence of a modern-type cell. Most of the proteins encoded by the genes from the minimal set have eukaryotic or archaeal homologs but seven key proteins of DNA replication do not. We speculate that the last common ancestor of the three primary kingdoms had an RNA genome. Possibilities are explored to further reduce the minimal set to model a primitive cell that might have existed at a very early stage of life evolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Helicobacter pylori è un batterio Gram-negativo in grado di colonizzare la mucosa gastrica umana e persistere per l'intero arco della vita dell'ospite. E' associato a patologie gastrointestinali, quali gastrite cronica, ulcere gastriche e duodenali, adenocarcinomi e linfomi gastrici. Si tratta di uno dei patogeni più diffusi, presente in circa metà della popolazione mondiale, e il solo che si è adattato a vivere nell'ambiente ostile dello stomaco umano. Molteplici sono i fattori di virulenza che permettono al batterio la colonizzazione della nicchia gastrica e contribuiscono, anche attraverso l' induzione di una risposta infiammatoria, a profonde modificazioni dell' omeostasi gastrica. Queste ultime si associano, ad esempio, all'iperproduzione di fattori proinfiammatori, ad alterazioni sia della regolazione della secrezione acida gastrica sia del ciclo cellulare e della morte cellulare programmata (apoptosi) delle cellule epiteliali gastriche, a disordini nel metabolismo del ferro e a carenze di elementi essenziali. Studi sulla diversità genetica di H. pylori osservata in ceppi isolati da varie regioni del mondo, dimostrano che tale batterio ha avuto una coevoluzione col genere umano attraverso la storia, ed è verosimile che H. pylori sia stato un costituente del microbiota gastrico per almeno 50.000 anni. Scopo della tesi è stato quello di identificare e caratterizzare proteine importanti per la colonizzazione e l'adattamento di H. pylori alla nicchia gastrica. In particolare gli sforzi si sono concentrati su due proteine periplasmatiche, la prima coinvolta nella difesa antiossidante (l'enzima catalasi-like, HP0485), e la seconda nel trasporto di nutrienti presenti nell'ambiente dello stomaco all'interno della cellula (la componente solubile di un ABC transporter, HP0298). La strategia utilizzata prevede un'analisi bioinformatica preliminare, l'ottenimento del gene per amplificazione, mediante PCR, dal genoma dell'organismo, la costruzione di un vettore per il clonaggio, l'espressione eterologa in E. coli e la successiva purificazione. La proteina così ottenuta viene caratterizzata mediante diverse tecniche, quali spettroscopia UV, dicroismo circolare, gel filtrazione analitica, spettrometria di massa. Il capitolo 1 contiene un'introduzione generale sul batterio, il capitolo 2 e il capitolo 3 descrivono gli studi relativi alle due proteine e sono entrambi suddivisi in un abstract iniziale, un'introduzione, la presentazione dei risultati, la discussione di questi ultimi, i materiali e i metodi utilizzati. La catalasi-like (HP0485) è una proteina periplasmatica con struttura monomerica, appartenente ad una famiglia di enzimi a funzione per la maggior parte sconosciuta, ma evolutivamente correlati alla ben nota catalasi, attore fondamentale nella difesa di H. pylori, grazie alla sua azione specifica di rimozione dell'acqua ossigenata. HP0485, pur conservando il fold catalasico e il legame al cofattore eme, non può compiere la reazione di dismutazione dell'acqua ossigenata; possiede invece un'attività perossidasica ad ampio spettro, essendo in grado di accoppiare la riduzione del perossido di idrogeno all'ossidazione di diversi substrati. Come la catalasi, lavora ad alte concentrazioni di aqua ossigenata e non arriva a saturazione a concentrazioni molto elevate di questo substrato (200 mM); la velocità di reazione catalizzata rimane lineare anche a questi valori, aspetto che la differenzia dalle perossidasi che vengono in genere inattivate da concentrazioni di perossido di idrogeno superiori a 10-50 mM. Queste caratteristiche di versatilità e robustezza suggeriscono che la catalasi-like abbia un ruolo di scavenger dell'acqua ossigenata e probabilmente anche un'altra funzione connessa al suo secondo substrato, ossia l'ossidazione di composti nello spazio periplasmatico cellulare. Oltre alla caratterizzazione dell'attività è descritta anche la presenza di un ponte disolfuro, conservato nelle catalasi-like periplasmatiche, con un ruolo nell'assemblaggio dell'eme per ottenere un enzima attivo e funzionale. La proteina periplasmatica HP0298, componente di un sistema di trasporto ABC, è classificata come trasportatore di dipeptidi e appartiene a una famiglia di proteine in grado di legare diversi substrati, tra cui di- e oligopeptidi, nichel, eme, glutatione. Benchè tutte associate a trasportatori di membrana batterici, queste proteine presentano un dominio di legame al substrato che risulta essere conservato nei domini extracellulari di recettori specifici di mammifero e uomo. Un esempio sono i recettori ionotropici e metabotropici del sistema nervoso. Per caratterizzare questa proteina è stato messo a punto un protocollo di ligand-fishing accoppiato alla spettrometria di massa. La proteina purificata, avente un tag di istidine, è stata incubata con un estratto cellulare di H. pylori per poter interagire con il suo substrato specifico all'interno dell'ambiente naturale in cui avviene il legame. Il complesso proteina-ligando è stato poi purificato per cromatografia di affinità e analizzato mediante HPLC-MS. L'identificazione dei picchi differenziali tra campioni con la proteina e 5 campioni di controllo ha portato alla caratterizzazione di pentapeptidi particolarmente ricchi in aminoacidi idrofobici e con almeno un residuo carico negativamente. Considerando che H. pylori necessita di alcuni aminoacidi essenziali, per la maggior parte idrofobici, e che lo stomaco umano è particolarmente ricco di peptidi prodotti dalla digestione delle proteine introdotte con il cibo, il ruolo fisiologico di HP0298 potrebbe essere l'internalizzazione di peptidi, con caratteristiche specifiche di lunghezza e composizione, che sono naturalmente presenti nella nicchia gastrica.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Durante uma infecção, uma complexa seqüência de eventos é inkiada após a invasão do hospedeiro por microrganismos patogênicos. Escherichia coli enteroinvasora (EIEC), assim como Shigella, causa disenteria através da invasão da mucosa do cólon, levando à destruição tecidual e inflamação. Para que ocorra um processo infeccioso, porém, são necessários inóculos de 102 Shigella e 106 EIEC. Foram avaliados aspectos da resposta inflamatória desencadeada pela infecção por EIEC em modelo murino, comparativamente a Shigella. A infecção de macrófagos J774 por EIEC resultou em fagocitose bacteriana, comprometimento da viabilidade do macrófago e produção de citocinas. Macrófagos de camundongos C57BU6 infectados com EIEC produziram NO, que parece ser importante no controle da infecção. Foi observado que camundongos INOS nocaute apresentaram maior produção de citocinas pró-inflamatórias e maior letalidade após infecção do que os selvagens. EIEC induziu a migração de granulócitos e monócitos para o peritônio, e a secreção de citocinas por estas células. Houve proliferação de linfócitos em resposta aos antígenos solúveis de EIEC, mas não foi detectada produção de citocinas por estes linfócitos.Comparativamente a Shigella, EIEC escapou mais lentamente do macrófago, induziu menor produção de citocinas pró-inflamatórias e NO, e menor ativação dos linfócitos T. Estes dados sugerem o desafio com EIEC desencadeia uma resposta menos severa no hospedeiro do que Shigella, o que explicaria a forma mais branda de disenteria e resolução mais rápida do processo infeccioso causado por EIEC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims: Isolation, identification and characterization of a highly efficient isomaltulose producer. Methods and Results: After an enrichment procedure for bacteria likely to metabolize isomaltulose in sucrose-rich environments, 578 isolates were screened for efficient isomaltulose biosynthesis using an aniline/diphenylamine assay and capillary electrophoresis. An isolate designated UQ68J was exceptionally efficient in sucrose isomerase activity. Conversion of sucrose into isomaltulose by UQ68J (enzyme activity of 90-100 U mg(-1) DW) was much faster than the current industrial strain Protaminobacter rubrum CBS574.77 (41-66 U mg(-1) DW) or a reference strain of Erwinia rhapontici (0.3-0.9 U mg(-1) DW). Maximum yield of isomaltulose at 78-80% of supplied sucrose was achieved in less than half the reaction time needed by CBS574.77, and the amount of contaminating trehalulose (4%) was the lowest recorded from an isomaltulose-producing microbe. UQ68J is a Gram negative, facultatively anaerobic, motile, noncapsulate, straight rod-shaped bacterium producing acid but no gas from glucose. Based on 16S rDNA analysis UQ68J is closest to Klebsiella oxytoca, but it differs from Klebsiella in defining characteristics and most closely resembles Pantoea dispersa in phenotype. Significance and Impact of Study: This organism is likely to have substantial advantage over previously characterized sucrose isomerase producers for the industrial production of isomaltulose.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As part of a study into antimycobacterial compounds a set of phenolic N1-benzylidene-pyridinecarboxamidrazones was prepared and evaluated. This report describes the unexpected discovery of a potent compound with a pronounced selectivity for Gram-positive bacteria over Gram-negative micro-organisms. In addition, this compound is active against various drug-resistant Gram-positive bacteria. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Septic shock can occur as a result of Gram-negative or Gram-positive infection and involves a complex interaction between bacterial factors and the host immune system producing a systemic inflammatory state that may progress to multiple organ failure and death. Gram-positive bacteria are increasingly becoming more prevalent especially Staphylococcus epidermidis in association with indwelling devices. Lipopolysaccaride (LPS) is the key Gram-negative component involved in this process, but it is not clear which components of Gram-positive bacteria are responsible for progression of this often fatal disease. The aim of this thesis was to investigate the effect of bacterial components on the immune systems. Lipid S, a short chain form of lipoteichoic acid (LTA) found to be excreted from bacteria during growth in culture medium was examined along with other Gram-positive cell wall components: LTA, peptidoglycan (PG) and wall teichoic acids (WTA) and LPS from Gram-negative bacteria. Lipid S, LTA, PG and LPS but not WTA all stimulated murine macrophages and cell lines to produce significant amounts of NO, TNF-a, IL-6 and IL-1 and would induce fever and tissue damage seen in inflammatory diseases. Lipid S proved to be the most potent out of the Gram-positive samples tested. IgG antibodies in patients serum were found to bind to and cross react with lipid S and LTA. Anti-inflammatory antibiotics, platelet activating factor (PAF), PAF receptor antagonists and monoclonal antibodies (mAbs) directed to LTA, CD14 and toll-like receptors were utilised to modulate cytokine and NO production. In cell culture the anti-LTA and the anti-CD14 mAbs failed to markedly attenuate the production of NO, TNF-a, IL-6 or IL-1, the anti-TLR4 antibody did greatly inhibit the ability of LPS to stimulate cytokine production but not lipid S. The tetracyclines proved to be the most effective compounds, many were active at low concentrations and showed efficacy to inhibit both lipid S and LPS stimulated macrophages to produce NO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anaplasma phagocytophilum, a Gram-negative, obligate intracellular bacterium infects primarily neutrophil granulocytes. Infection with A. phagocytophilum leads to inhibition of neutrophil apoptosis and consequently contributes to the longevity of the host cells. Previous studies demonstrated that the infection inhibits the executionary apoptotic machinery in neutrophils. However, little attempt has been made to explore which survival signals are modulated by the pathogen. The aim of the present study was to clarify whether the phosphatidylinositol 3-kinase (PI3K)/Akt and NF-?B signaling pathways, which are considered as important survival pathways in neutrophils, are involved in A. phagocytophilum-induced apoptosis delay. Our data show that infection of neutrophils with A. phagocytophilum activates the PI3K/Akt pathway and suggest that this pathway, which in turn maintains the expression of the antiapoptotic protein Mcl-1, contributes to the infection-induced apoptosis delay. In addition, the PI3K/Akt pathway is involved in the activation of NF-?B in A. phagocytophilum-infected neutrophils. Activation of NF-?B leads to the release of interleukin-8 (IL-8) from infected neutrophils, which, in an autocrine manner, delays neutrophil apoptosis. In addition, enhanced expression of the antiapoptotic protein cIAP2 was observed in A. phagocytophilum-infected neutrophils. Taken together, the data indicate that upstream of the apoptotic cascade, signaling via the PI3K/Akt pathway plays a major role for apoptosis delay in A. phagocytophilum-infected neutrophils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation. Very few of the commercial smear microorganisms, deliberately inoculated onto the cheese surface, were reisolated and then mainly from the initial stages of ripening, implying that smear cheese production units must have an adventitious "house" flora. Limburger cheese had the simplest microflora, containing two yeasts, Debaryomyces hansenii and Geotrichum candidum, and two bacteria, Arthrobacter arilaitensis and Brevibacterium aurantiacum. The microflora of Livarot was the most complicated, comprising 10 yeasts and 38 bacteria, including many gram-negative organisms. Reblochon also had a very diverse microflora containing 8 yeasts and 13 bacteria (excluding gram-negative organisms which were not identified), while Gubbeen had 7 yeasts and 18 bacteria and Tilsit had 5 yeasts and 9 bacteria. D. hansenii was by far the dominant yeast, followed in order by G. candidum, Candida catenulata, and Kluyveromyces lactis. B. aurantiacum was the dominant bacterium and was found in every batch of the 5 cheeses. The next most common bacteria, in order, were Staphylococcus saprophyticus, A. arilaitensis, Corynebacterium casei, Corynebacterium variabile, and Microbacterium gubbeenense. S. saprophyticus was mainly found in Gubbeen, and A. arilaitensis was found in all cheeses but not in every batch. C. casei was found in most batches of Reblochon, Livarot, Tilsit, and Gubbeen. C. variabile was found in all batches of Gubbeen and Reblochon but in only one batch of Tilsit and in no batch of Limburger or Livarot. Other bacteria were isolated in low numbers from each of the cheeses, suggesting that each of the 5 cheeses has a unique microflora. In Gubbeen cheese, several different strains of the dominant bacteria were present, as determined by pulsed-field gel electrophoresis, and many of the less common bacteria were present as single clones. The culture-independent method, denaturing gradient gel electrophoresis, resulted in identification of several bacteria which were not found by the culture-dependent (isolation and rep-PCR identification) method. It was thus a useful complementary technique to identify other bacteria in the cheeses. The gross composition, the rate of increase in pH, and the indices of proteolysis were different in most of the cheeses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gram-positive bacteria possess a permeable cell wall that usually does not restrict the penetration of antimicrobials. However, resistance due to restricted penetration can occur, as illustrated by vancomycin-intermediate resistant Staphylococcus aureus strains (VISA) which produce a markedly thickened cell wall. Alterations in these strains include increased amounts of nonamidated glutamine residues in the peptidoglycan and it is suggested that the resistance mechanism involves 'affinity trapping' of vancomycin in the thickened cell wall. VISA strains have reduced doubling times, lower sensitivity to lysostaphin and reduced autolytic activity, which may reflect changes in the D-alanyl ester content of the wall and membrane teichoic acids. Mycobacterial cell walls have a high lipid content, which is assumed to act as a major barrier to the penetration of antimicrobial agents. Relatively hydrophobic antibiotics such as rifampicin and fluoroquinolones may be able to cross the cell wall by diffusion through the hydrophobic bilayer composed of long chain length mycolic acids and glycolipids. Hydrophilic antibiotics and nutrients cannot diffuse across this layer and are thought to use porin channels which have been reported in many species of mycobacteria. The occurrence of porins in a lipid bilayer supports the view that the mycobacterial wall has an outer membrane analogous to that of gram-negative bacteria. However, mycobacterial porins are much less abundant than in the gram-negative outer membrane and allow only low rates of uptake for small hydrophilic nutrients and antibiotics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the hallmarks of bacterial survival is their ability to adapt rapidly to changing environmental conditions. Niche adaptation is a response to the signals received that are relayed, often to regulators that modulate gene expression. In the post-genomic era, DNA microarrays are used to study the dynamics of gene expression on a global scale. Numerous studies have used Pseudomonas aeruginosa--a Gram-negative environmental and opportunistic human pathogenic bacterium--as the model organism in whole-genome transcriptome analysis. This paper reviews the transcriptome studies that have led to immense advances in our understanding of the biology of this intractable human pathogen. Comparative analysis of 23 P. aeruginosa transcriptome studies has led to the identification of a unique set of genes that are signal specific and a core set that is differentially regulated. The 303 genes in the core set are involved in bacterial homeostasis, making them attractive therapeutic targets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fusobacterium necrophorum, a Gram negative, anaerobic bacterium, is a common cause of acute pharyngitis and tonsillitis and a rare cause of more severe infections of the head and neck. At the beginning of the project, there was no available genome sequence for F. necrophorum. The aim of this project was to sequence the F. necrophorum genome and identify and study its putative virulence factors contained using in silico and in vitro analysis. Type strains JCM 3718 and JCM 3724,F. necrophorum subspecies necrophorum (Fnn) and funduliforme (Fnf), respectively, and strain ARU 01 (Fnf), isolated from a patient with LS, were commercially sequenced by Roche 454 GS-FLX+ next generation sequencing and assembled into contigs using Roche GS Assembler. Sequence data was annotated semi-automatically, using the xBASE pipeline, BLASTp and Pfam. The F. necrophorum genome was determined to be approximately 2.1 – 2.3 Mb in size, with an estimated 1,950 ORFs and includes genes for a leukotoxin, ecotin, haemolysin, haemagglutinin, haemin receptor, adhesin and type Vb and Vc secretion systems. The prevalence of the leukotoxin gene was investigated in strains JCM 3718, JCM 3724 and ARU 01, as well as a clinical collection of 25 Fnf strains, identified using biochemical and molecular tests. The leukotoxin operon was found to be universal within the strain collection by PCR. HL-60 cells subjected to aliquots of concentrated high molecular weight culture supernatant, predicted to contain the secreted leukotoxins of strains JCM 3718, JCM 3724 and ARU 01, were killed in a dose-dependent manner. The cytotoxic effect of the leukotoxin against human donor white blood cells was also tested to validate the HL-60 assay. The differences in the results between the two assays were not statistically significant. Ecotin, a serine protease inhibitor, was found to be present in 100 % of the strain collection and had a highly conserved sequence with primary and secondary binding sites exposed on opposing sides of the protein. During enzyme inhibition studies, a purified recombinant F. necrophorum ecotin protein inhibited human neutrophil elastase, a protease that degrades bacteria at inflammation sites, and human plasma kallikrein, a component of the host clotting cascade. The recombinant ecotin also prolonged human plasma clotting times by up to 7-fold for the extrinsic pathway, and up to 40-fold for the intrinsic pathway. The genome sequence data provides important information about F. necrophorum type strains and enables comparative study between strains and subspecies. Results from the leukotoxin and ecotin assays can be used to build up an understanding of how the organism behaves during infection.