941 resultados para generalized second order conditions
Resumo:
J Biol Inorg Chem (2010) 15:967–976 DOI 10.1007/s00775-010-0658-6
Resumo:
We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.
Resumo:
The evolution of a quantitative phenotype is often envisioned as a trait substitution sequence where mutant alleles repeatedly replace resident ones. In infinite populations, the invasion fitness of a mutant in this two-allele representation of the evolutionary process is used to characterize features about long-term phenotypic evolution, such as singular points, convergence stability (established from first-order effects of selection), branching points, and evolutionary stability (established from second-order effects of selection). Here, we try to characterize long-term phenotypic evolution in finite populations from this two-allele representation of the evolutionary process. We construct a stochastic model describing evolutionary dynamics at non-rare mutant allele frequency. We then derive stability conditions based on stationary average mutant frequencies in the presence of vanishing mutation rates. We find that the second-order stability condition obtained from second-order effects of selection is identical to convergence stability. Thus, in two-allele systems in finite populations, convergence stability is enough to characterize long-term evolution under the trait substitution sequence assumption. We perform individual-based simulations to confirm our analytic results.
Resumo:
A coercive estimate for a solution of a degenerate second order di fferential equation is installed, and its applications to spectral problems for the corresponding dif ferential operator is demonstrated. The suffi cient conditions for existence of the solutions of one class of the nonlinear second order diff erential equations on the real axis are obtained.
Resumo:
Cette thèse s'intéresse à étudier les propriétés extrémales de certains modèles de risque d'intérêt dans diverses applications de l'assurance, de la finance et des statistiques. Cette thèse se développe selon deux axes principaux, à savoir: Dans la première partie, nous nous concentrons sur deux modèles de risques univariés, c'est-à- dire, un modèle de risque de déflation et un modèle de risque de réassurance. Nous étudions le développement des queues de distribution sous certaines conditions des risques commun¬s. Les principaux résultats sont ainsi illustrés par des exemples typiques et des simulations numériques. Enfin, les résultats sont appliqués aux domaines des assurances, par exemple, les approximations de Value-at-Risk, d'espérance conditionnelle unilatérale etc. La deuxième partie de cette thèse est consacrée à trois modèles à deux variables: Le premier modèle concerne la censure à deux variables des événements extrême. Pour ce modèle, nous proposons tout d'abord une classe d'estimateurs pour les coefficients de dépendance et la probabilité des queues de distributions. Ces estimateurs sont flexibles en raison d'un paramètre de réglage. Leurs distributions asymptotiques sont obtenues sous certaines condi¬tions lentes bivariées de second ordre. Ensuite, nous donnons quelques exemples et présentons une petite étude de simulations de Monte Carlo, suivie par une application sur un ensemble de données réelles d'assurance. L'objectif de notre deuxième modèle de risque à deux variables est l'étude de coefficients de dépendance des queues de distributions obliques et asymétriques à deux variables. Ces distri¬butions obliques et asymétriques sont largement utiles dans les applications statistiques. Elles sont générées principalement par le mélange moyenne-variance de lois normales et le mélange de lois normales asymétriques d'échelles, qui distinguent la structure de dépendance de queue comme indiqué par nos principaux résultats. Le troisième modèle de risque à deux variables concerne le rapprochement des maxima de séries triangulaires elliptiques obliques. Les résultats théoriques sont fondés sur certaines hypothèses concernant le périmètre aléatoire sous-jacent des queues de distributions. -- This thesis aims to investigate the extremal properties of certain risk models of interest in vari¬ous applications from insurance, finance and statistics. This thesis develops along two principal lines, namely: In the first part, we focus on two univariate risk models, i.e., deflated risk and reinsurance risk models. Therein we investigate their tail expansions under certain tail conditions of the common risks. Our main results are illustrated by some typical examples and numerical simu¬lations as well. Finally, the findings are formulated into some applications in insurance fields, for instance, the approximations of Value-at-Risk, conditional tail expectations etc. The second part of this thesis is devoted to the following three bivariate models: The first model is concerned with bivariate censoring of extreme events. For this model, we first propose a class of estimators for both tail dependence coefficient and tail probability. These estimators are flexible due to a tuning parameter and their asymptotic distributions are obtained under some second order bivariate slowly varying conditions of the model. Then, we give some examples and present a small Monte Carlo simulation study followed by an application on a real-data set from insurance. The objective of our second bivariate risk model is the investigation of tail dependence coefficient of bivariate skew slash distributions. Such skew slash distributions are extensively useful in statistical applications and they are generated mainly by normal mean-variance mixture and scaled skew-normal mixture, which distinguish the tail dependence structure as shown by our principle results. The third bivariate risk model is concerned with the approximation of the component-wise maxima of skew elliptical triangular arrays. The theoretical results are based on certain tail assumptions on the underlying random radius.
Resumo:
Aquest projecte es centra principalment en el detector no coherent d’un GPS. Per tal de caracteritzar el procés de detecció d’un receptor, es necessita conèixer l’estadística implicada. Pel cas dels detectors no coherents convencionals, l’estadística de segon ordre intervé plenament. Les prestacions que ens dóna l’estadística de segon ordre, plasmada en la ROC, són prou bons tot i que en diferents situacions poden no ser els millors. Aquest projecte intenta reproduir el procés de detecció mitjançant l’estadística de primer ordre com a alternativa a la ja coneguda i implementada estadística de segon ordre. Per tal d’aconseguir-ho, s’usen expressions basades en el Teorema Central del Límit i de les sèries Edgeworth com a bones aproximacions. Finalment, tant l’estadística convencional com l’estadística proposada són comparades, en termes de la ROC, per tal de determinar quin detector no coherent ofereix millor prestacions en cada situació.
Resumo:
A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory
Resumo:
Structural equation models are widely used in economic, socialand behavioral studies to analyze linear interrelationships amongvariables, some of which may be unobservable or subject to measurementerror. Alternative estimation methods that exploit different distributionalassumptions are now available. The present paper deals with issues ofasymptotic statistical inferences, such as the evaluation of standarderrors of estimates and chi--square goodness--of--fit statistics,in the general context of mean and covariance structures. The emphasisis on drawing correct statistical inferences regardless of thedistribution of the data and the method of estimation employed. A(distribution--free) consistent estimate of $\Gamma$, the matrix ofasymptotic variances of the vector of sample second--order moments,will be used to compute robust standard errors and a robust chi--squaregoodness--of--fit squares. Simple modifications of the usual estimateof $\Gamma$ will also permit correct inferences in the case of multi--stage complex samples. We will also discuss the conditions under which,regardless of the distribution of the data, one can rely on the usual(non--robust) inferential statistics. Finally, a multivariate regressionmodel with errors--in--variables will be used to illustrate, by meansof simulated data, various theoretical aspects of the paper.
Resumo:
[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.
Resumo:
[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.
Resumo:
Temperature and velocity correlation functions in a fluid subjected to conditions creating both a temperature and a velocity gradient are computed up to second order in the gradients. Temperature and velocity fluctuations are coupled due to convection and viscous heating. When the viscosity goes to infinity one gets the temperature correlation function for a solid under a temperature gradient, which contains a long-ranged contribution, quadratic in the temperature gradient. The velocity correlation function also exhibits long-range behavior. In a particular case its equilibrium term is diagonal whereas the nonequilibrium correction contains nondiagonal terms.
Resumo:
A high resolution mineralogical study (bulk-rock and clay-fraction) was carried out upon the hemipelagic strata of the Angles section (Vocontian Basin, SE France) in which the Valanginian positive C-isotope excursion occurs. To investigate sea-level fluctuations and climate change respectively, a Detrital Index (DI: (phyllosilicates and quartz)/calcite) and a Weathering Index (WI: kaolinite/(illite + chlorite)) were established and compared to second-order sea-level fluctuations. In addition, the mineralogical data were compared with the High Nutrient Index (HNI, based on calcareous nannofossil taxa) data obtained by Duchamp-Alphonse et al. (2007), in order to assess the link between the hydrolysis conditions recorded on the surrounding continents and the trophic conditions inferred for the Vocontian Basin. It appears that the mineralogical distribution along the northwestern Tethyan margin is mainly influenced by sea-level changes during the Early Valanginian (Pertransiens to Stephanophorus ammonite Zones) and by climate variations from the late Early Valanginian to the base of the Hauterivian (top of the Stephanophorus to the Radiatus ammonite Zones). The sea-level fall observed in the Pertransiens ammonite Zone (Early Valanginian) is well expressed by an increase in detrital inputs (an increase in the DI) associated with a more proximal source and a shallower marine environment, whereas the sea-level rise recorded in the Stephanophorus ammonite Zone corresponds to a decrease in detrital influx (a decrease in the DI) as the source becomes more distal and the environment deeper. Interpretation of both DI and WI, indicates that the positive C-isotope excursion (top of the Stephanophorus to the Verrucosum ammonite Zones) is associated with an increase of detrital inputs under a stable, warm and humid climate, probably related to greenhouse conditions, the strongest hydrolysis conditions being reached at the maximum of the positive C-isotope excursion. From the Verrucosum ammonite Zone to the base of the Hauterivian (Radiatus ammonite Zone) climatic conditions evolved from weak hydrolysis conditions and, most likely, a cooler climate (resulting in a decrease in detrital inputs) to a seasonal climate in which more humid seasons alternated with more arid ones. The comparison of the WI to the HNI shows that the nutrification recorded al: the Angles section from the top of the Stephanophorus to the Radiatus ammonite Zones (including the positive C-isotope shift), is associated with climatic changes in the source areas. At that time, increased nutrient inputs were generally triggered by increased weathering processes in the source areas due to acceleration in the hydrological cycle under greenhouse conditions This scenario accords with the widely questioned palaeoenvironmental model proposed by Lini et al., (1992) and suggests that increasing greenhouse conditions are the main factor that drove the palaeoenvironmental changes observed in the hemipelagic realm of the Vocontian Basin, during the Valanginian positive C-isotope shift. This high-resolution mineralogical study highlights short-term climatic changes during the Valanginian, probably associated to rapid changes in the C-cycle. Coeval Massive Parana-Etendeka flood basalt eruptions may explain such rapid perturbations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
We study general models of holographic superconductivity parametrized by four arbitrary functions of a neutral scalar field of the bulk theory. The models can accommodate several features of real superconductors, like arbitrary critical temperatures and critical exponents in a certain range, and perhaps impurities or boundary or thickness effects. We find analytical expressions for the critical exponents of the general model and show that they satisfy the Rushbrooke identity. An important subclass of models exhibit second order phase transitions. A study of the specific heat shows that general models can also describe holographic superconductors undergoing first, second and third (or higher) order phase transitions. We discuss how small deformations of the HHH model can lead to the appearance of resonance peaks in the conductivity, which increase in number and become narrower as the temperature is gradually decreased, without the need for tuning mass of the scalar to be close to the Breitenlohner-Freedman bound. Finally, we investigate the inclusion of a generalized ¿theta term¿ producing Hall effect without magnetic field.