893 resultados para gel electrolyte
Resumo:
OBJETIVOS: testar a eficácia e a tolerância do gel de aroeira (Schinus terebinthifolius Raddi) para tratamento da vaginose bacteriana. MÉTODOS: quarenta e oito mulheres com vaginose bacteriana sintomática (de acordo com os critérios de Amsel) foram incluídas em ensaio clínico randomizado, duplo-cego, controlado, comparando-se o uso do gel vaginal de aroeira (25 casos) com placebo (23 casos). Os principais desfechos avaliados foram: taxa de cura, presença de lactobacilos na colpocitologia depois do tratamento e efeitos colaterais. Realizou-se análise estatística usando os testes chi2 e exato de Fisher, ao nível de significância de 5%. RESULTADOS: adotando-se os parâmetros clínicos de Amsel para vaginose bacteriana, a taxa de cura foi de 84% no grupo da aroeira e 47,8% no grupo placebo (p = 0,008). Observou-se freqüência significativamente maior de lactobacilos na colpocitologia entre as pacientes tratadas com aroeira (43,5%) em relação ao placebo (4,3%) (p = 0,002). Efeitos adversos relacionados ao tratamento não foram freqüentes em ambos os grupos. CONCLUSÕES: o presente estudo indica que o gel vaginal de aroeira é efetivo e seguro para o tratamento da vaginose bacteriana. Além disso, sugerem-se potenciais efeitos benéficos na flora vaginal.
Resumo:
Foi feita uma comparação entre os antígenos (Ag), preparados a partir dos vírus Maedi-Visna (MVV) e Artrite-encefalite Caprina (CAEV) para detecção de anticorpos contra o CAEV em 120 amostras de soro caprino. A sensibilidade e especificidade relativa da imunodifusão em ágar gel (IDAG) usando-se Ag MVV em relação ao Ag CAEV, foi 77,3% e 100%, respectivamente (X2, p<0,01). Assim, para diagnóstico de infecção pelo CAEV recomenda-se apenas o uso de Ag preparado a partir do CAEV.
Resumo:
The aim was to provide reference data for blood gas/acid-base status and electrolytes for non-anesthetized Amazon parrots (Amazona aestiva). Thirty-five adult parrots from Tietê ecologic park were utilized. Arterial blood (0.3ml) samples were anaerobically collected from the superficial ulnar artery in heparinized (sodium heparin) 1-ml plastic syringes. The samples were immediately analyzed through a portable analyzer (i-STAT*, Abbot, Illinois, USA) with cartridges (EG7+). These data were grouped in such a way as to present both mean and standard deviation: body weight (360±37g), respiratory rate (82±33 b/m), temperature (41.8±0.6°C), hydrogen potential (7.452±0.048), carbon dioxide partial pressure (22.1±4.0mmHg), oxygen partial pressure (98.1±7.6mmHg), base excess (-7.9±3.1), plasma concentration of bicarbonate ions (14.8±2.8mmol/L), oxygen saturation (96.2±1.1%), plasma concentration of sodium (147.4±2.2mmol/L), plasma concentration of potassium (3.5±0.53mmol/L), plasma concentration of calcium (0.8±0.28mmol/L), hematocrit (38.7±6.2%) and concentration of hemoglobin (13.2±2.1g/dl). This study led us to conclude that, although the results obtained showed hypocapnia and low values of bicarbonate and base excess, when compared to other avian species, these data are very similar. Besides, in spite of the equipment being approved only for human beings, it was considered simple and very useful in the analysis of avian blood samples. By using this equipment we were able to provide references data for non-anaesthetized Amazon parrots.
Resumo:
Lignocellulosic biomasses (e.g., wood and straws) are a potential renewable source for the production of a wide variety of chemicals that could be used to replace those currently produced by petrochemical industry. This would lead to lower greenhouse gas emissions and waste amounts, and to economical savings. There are many possible pathways available for the manufacturing of chemicals from lignocellulosic biomasses. One option is to hydrolyze the cellulose and hemicelluloses of these biomasses into monosaccharides using concentrated sulfuric acid as catalyst. This process is an efficient method for producing monosaccharides which are valuable platforn chemicals. Also other valuable products are formed in the hydrolysis. Unfortunately, the concentrated acid hydrolysis has been deemed unfeasible mainly due to high chemical consumption resulting from the need to remove sulfuric acid from the obtained hydrolysates prior to the downstream processing of the monosaccharides. Traditionally, this has been done by neutralization with lime. This, however, results in high chemical consumption. In addition, the by-products formed in the hydrolysis are not removed and may, thus, hinder the monosaccharide processing. In order to improve the feasibility of the concentrated acid hydrolysis, the chemical consumption should be decreased by recycling of sulfuric acid without neutralization. Furthermore, the monosaccharides and the other products formed in the hydrolysis should be recovered selectively for efficient downstream processing. The selective recovery of the hydrolysis by-products would have additional economical benefits on the process due to their high value. In this work, the use of chromatographic fractionation for the recycling of sulfuric acid and the selective recovery of the main components from the hydrolysates formed in the concentrated acid hydrolysis was investigated. Chromatographic fractionation based on the electrolyte exclusion with gel type strong acid cation exchange resins in acid (H+) form as a stationary phase was studied. A systematic experimental and model-based study regarding the separation task at hand was conducted. The phenomena affecting the separation were determined and their effects elucidated. Mathematical models that take accurately into account these phenomena were derived and used in the simulation of the fractionation process. The main components of the concentrated acid hydrolysates (sulfuric acid, monosaccharides, and acetic acid) were included into this model. Performance of the fractionation process was investigated experimentally and by simulations. Use of different process options was also studied. Sulfuric acid was found to have a significant co-operative effect on the sorption of the other components. This brings about interesting and beneficial effects in the column operations. It is especially beneficial for the separation of sulfuric acid and the monosaccharides. Two different approaches for the modelling of the sorption equilibria were investigated in this work: a simple empirical approach and a thermodynamically consistent approach (the Adsorbed Solution theory). Accurate modelling of the phenomena observed in this work was found to be possible using the simple empirical models. The use of the Adsorbed Solution theory is complicated by the nature of the theory and the complexity of the studied system. In addition to the sorption models, a dynamic column model that takes into account the volume changes of the gel type resins as changing resin bed porosity was also derived. Using the chromatography, all the main components of the hydrolysates can be recovered selectively, and the sulfuric acid consumption of the hydrolysis process can be lowered considerably. Investigation of the performance of the chromatographic fractionation showed that the highest separation efficiency in this separation task is obtained with a gel type resin with a high crosslinking degree (8 wt. %); especially when the hydrolysates contain high amounts of acetic acid. In addition, the concentrated acid hydrolysis should be done with as low sulfuric acid concentration as possible to obtain good separation performance. The column loading and flow rate also have large effects on the performance. In this work, it was demonstrated that when recycling of the fractions obtained in the chromatographic fractionation are recycled to preceding unit operations these unit operations should included in the performance evaluation of the fractionation. When this was done, the separation performance and the feasibility of the concentrated acid hydrolysis process were found to improve considerably. Use of multi-column chromatographic fractionation processes, the Japan Organo process and the Multi-Column Recycling Chromatography process, was also investigated. In the studied case, neither of these processes could compete with the single-column batch process in the productivity. However, due to internal recycling steps, the Multi-Column Recycling Chromatography was found to be superior to the batch process when the product yield and the eluent consumption were taken into account.
Resumo:
Polymerase chain reaction (PCR) with JB1 or REP consensus oligonucleotides and pulsed field gel electrophoresis (PFGE) were used to study genomic DNA extracted from 31 strains of enterococci. Eleven ATCC strains, representative of 11 species of Enterococcus, were initially tested by JB1-PCR, revealing that Enterococcus malodoratus and Enterococcus hirae presented identical banding patterns. Eight Enterococcus faecium isolates from Stanford University and 12 from São Paulo Hospital were studied by JB1-PCR, REP-PCR 1/2R and PFGE. Among the isolates from Stanford University, 5 genotypes were defined by JB1-PCR, 7 by REP-PCR 1/2R and 4 by PFGE. Among the isolates from São Paulo Hospital, 9 genotypes were identified by JB1-PCR, 6 by REP-PCR and 5 by PFGE. The three methods identified identical genotypes, but there was not complete agreement among them.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.
Resumo:
We investigated the involvement of GABAergic mechanisms of the central amygdaloid nucleus (CeA) in unanesthetized rats subjected to acute isotonic or hypertonic blood volume expansion (BVE). Male Wistar rats bearing cannulas unilaterally implanted in the CeA were treated with vehicle, muscimol (0.2 nmol/0.2 µL) or bicuculline (1.6 nmol/0.2 µL) in the CeA, followed by isotonic or hypertonic BVE (0.15 or 0.3 M NaCl, 2 mL/100 g body weight over 1 min). The vehicle-treated group showed an increase in sodium excretion, urinary volume, plasma oxytocin (OT), and atrial natriuretic peptide (ANP) levels compared to control rats. Muscimol reduced the effects of BVE on sodium excretion (isotonic: 2.4 ± 0.3 vs vehicle: 4.8 ± 0.2 and hypertonic: 4.0 ± 0.7 vs vehicle: 8.7 ± 0.6 µEq·100 g-1·40 min-1); urinary volume after hypertonic BVE (83.8 ± 10 vs vehicle: 255.6 ± 16.5 µL·100 g-1·40 min-1); plasma OT levels (isotonic: 15.3 ± 0.6 vs vehicle: 19.3 ± 1 and hypertonic: 26.5 ± 2.6 vs vehicle: 48 ± 3 pg/mL), and ANP levels (isotonic: 97 ± 12.8 vs vehicle: 258.3 ± 28.1 and hypertonic: 160 ± 14.6 vs vehicle: 318 ± 16.3 pg/mL). Bicuculline reduced the effects of isotonic or hypertonic BVE on urinary volume and ANP levels compared to vehicle-treated rats. However, bicuculline enhanced the effects of hypertonic BVE on plasma OT levels. These data suggest that CeA GABAergic mechanisms are involved in the control of ANP and OT secretion, as well as in sodium and water excretion in response to isotonic or hypertonic blood volume expansion.