920 resultados para finite-time tracking
Resumo:
RESUME Les améliorations méthodologiques des dernières décennies ont permis une meilleure compréhension de la motilité gastro-intestinale. Il manque toutefois une méthode qui permette de suivre la progression du chyme le long du tube gastro-intestinal. Pour permettre l'étude de la motilité de tout le tractus digestif humain, une nouvelle technique, peu invasive, a été élaborée au Département de Physiologie, en collaboration avec l'EPFL. Appelée "Magnet Tracking", la technique est basée sur la détection du champ magnétique généré par des matériaux ferromagnétiques avalés. A cet usage, une pilule magnétique, une matrice de capteurs et un logiciel ont été développés. L'objet de ce travail est de démontrer la faisabilité d'un examen de la motilité gastro-intestinale chez l'Homme par cette méthode. L'aimant est un cylindre (ø 6x7 mm, 0.2 cm3) protégé par une gaine de silicone. Le système de mesure est constitué d'une matrice de 4x4 capteurs et d'un ordinateur portable. Les capteurs fonctionnent sur l'effet Hall. Grâce à l'interface informatique, l'évolution de la position de l'aimant est suivie en temps réel à travers tout le tractus digestif. Sa position est exprimée en fonction du temps ou reproduite en 3-D sous forme d'une trajectoire. Différents programmes ont été crées pour analyser la dynamique des mouvements de l'aimant et caractériser la motilité digestive. Dix jeunes volontaires en bonne santé ont participé à l'étude. L'aimant a été avalé après une nuit de jeûne et son séjour intra digestif suivi pendant 2 jours consécutifs. Le temps moyen de mesure était de 34 heures. Chaque sujet a été examiné une fois sauf un qui a répété sept fois l'expérience. Les sujets restaient en décubitus dorsal, tranquilles et pouvaient interrompre la mesure s'ils le désiraient. Ils sont restés à jeûne le premier jour. L'évacuation de l'aimant a été contrôlée chez tous les sujets. Tous les sujets ont bien supporté l'examen. Le marqueur a pu être détecté de l'oesophage au rectum. La trajectoire ainsi constituée représente une conformation de l'anatomie digestive : une bonne superposition de celle-ci à l'anatomie est obtenue à partir des images de radiologie conventionnelle (CT-scan, lavement à la gastrografine). Les mouvements de l'aimant ont été caractérisés selon leur périodicité, leur amplitude ou leur vitesse pour chaque segment du tractus digestif. Ces informations physiologiques sont bien corrélées à celles obtenues par des méthodes établies d'étude de la motilité gastro-intestinale. Ce travail démontre la faisabilité d'un examen de la motilité gastro-intestinal chez l'Homme par la méthode de Magnet Tracking. La technique fournit les données anatomiques et permet d'analyser en temps réel la dynamique des mouvements du tube digestif. Cette méthode peu invasive ouvre d'intéressantes perspectives pour l'étude de motilité dans des conditions physiologiques et pathologiques. Des expériences visant à valider cette approche en tant que méthode clinique sont en voie de réalisation dans plusieurs centres en Suisse et à l'étranger. SUMMARY Methodological improvements realised over the last decades have permitted a better understanding of gastrointestinal motility. Nevertheless, a method allowing a continuous following of lumina' contents is still lacking. In order to study the human digestive tract motility, a new minimally invasive technique was developed at the Department of Physiology in collaboration with Swiss Federal Institute of Technology. The method is based on the detection of magnetic field generated by swallowed ferromagnetic materials. The aim of our work was to demonstrate the feasibility of this new approach to study the human gastrointestinal motility. The magnet used was a cylinder (ø6x7mm, 0.2 cm3) coated with silicon. The magnet tracking system consisted of a 4x4 matrix of sensors based on the Hall effect Signals from the sensors were digitised and sent to a laptop computer for processing and storage. Specific software was conceived to analyse in real time the progression of the magnet through the gastrointestinal tube. Ten young and healthy volunteers were enrolled in the study. After a fasting period of 12 hours, they swallowed the magnet. The pill was then tracked for two consecutive days for 34 hours on average. Each subject was studied once except one who was studied seven times. Every subject laid on his back for the entire experiment but could interrupt it at anytime. Evacuation of the magnet was controlled in all subjects. The examination was well tolerated. The pill could be followed from the esophagus to the rectum. The trajectory of the magnet represented a "mould" of the anatomy of the digestive tube: a good superimposition with radiological anatomy (gastrografin contrast and CT) was obtained. Movements of the magnet were characterized by periodicity, velocity, and amplitude of displacements for every segment of the digestive tract. The physiological information corresponded well to data from current methods of studying gastrointestinal motility. This work demonstrates the feasibility of the new approach in studies of human gastrointestinal motility. The technique allows to correlate in real time the dynamics of digestive movements with the anatomical data. This minimally invasive method is ready for studies of human gastrointestinal motility under physiological as well as pathological conditions. Studies aiming at validation of this new approach as a clinically relevant tool are being realised in several centres in Switzerland and abroad. Abstract: A new minimally invasive technique allowing for anatomical mapping and motility studies along the entire human digestive system is presented. The technique is based on continuous tracking of a small magnet progressing through the digestive tract. The coordinates of the magnet are calculated from signals recorded by 16 magnetic field sensors located over the abdomen. The magnet position, orientation and trajectory are displayed in real time. Ten young healthy volunteers were followed during 34 h. The technique was well tolerated and no complication was encountered, The information obtained was 3-D con-figuration of the digestive tract and dynamics of the magnet displacement (velocity, transit time, length estimation, rhythms). In the same individual, repea-ted examination gave very reproducible results. The anatomical and physiological information obtained corresponded well to data from current methods and imaging. This simple, minimally invasive technique permits examination of the entire digestive tract and is suitable for both research and clinical studies. In combination with other methods, it may represent a useful tool for studies of Cl motility with respect to normal and pathological conditions.
Resumo:
Inspired by experiments that use single-particle tracking to measure the regions of confinement of selected chromosomal regions within cell nuclei, we have developed an analytical approach that takes into account various possible positions and shapes of the confinement regions. We show, in particular, that confinement of a particle into a subregion that is entirely enclosed within a spherical volume can lead to a higher limit of the mean radial square displacement value than the one associated with a particle that can explore the entire spherical volume. Finally, we apply the theory to analyse the motion of extrachromosomal chromatin rings within nuclei of living yeast.
Resumo:
In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence
Resumo:
The space and time discretization inherent to all FDTD schemesintroduce non-physical dispersion errors, i.e. deviations ofthe speed of sound from the theoretical value predicted bythe governing Euler differential equations. A generalmethodologyfor computing this dispersion error via straightforwardnumerical simulations of the FDTD schemes is presented.The method is shown to provide remarkable accuraciesof the order of 1/1000 in a wide variety of twodimensionalfinite difference schemes.
Resumo:
The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
This paper presents several algorithms for joint estimation of the target number and state in a time-varying scenario. Building on the results presented in [1], which considers estimation of the target number only, we assume that not only the target number, but also their state evolution must be estimated. In this context, we extend to this new scenario the Rao-Blackwellization procedure of [1] to compute Bayes recursions, thus defining reduced-complexity solutions for the multi-target set estimator. A performance assessmentis finally given both in terms of Circular Position Error Probability - aimed at evaluating the accuracy of the estimated track - and in terms of Cardinality Error Probability, aimed at evaluating the reliability of the target number estimates.
Resumo:
The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.
Resumo:
The Magnet Tracking System (MTS) is a minimally-invasive technique of continuous evaluation of gastrointestinal motility. In this study, MTS was used to analyse colonic propulsive dynamics and compare the transit of a magnetic pill with that of standard radio-opaque markers. MTS monitors the progress in real time of a magnetic pill through the gut. Ten men and 10 women with regular daily bowel movements swallowed this pill and 10 radio-opaque markers at 8 pm. Five hours of recordings were conducted during 2 following mornings. Origin, direction, amplitude and velocity of movements were analysed relative to space-time plots of the pill trajectory. Abdominal radiographs were taken to compare the progress of both pill and markers. The magnetic pill lay idle for 90% of its sojourn in the colon; its total retrograde displacement accounted for only 20% of its overall movement. Analysis of these movements showed a bimodal distribution of velocities: around 1.5 and 50 cm min(-1), the latter being responsible for 2/3 of distance traversed. There were more movements overall and more mass movements in males. Net hourly forward progress was greater in the left than right colon, and greater in males. The position of the magnetic pill correlated well with the advancement of markers. MTS showed patterns and propulsion dynamics of colonic segments with as yet unmet precision. Detailed analysis of slow and fast patterns of colonic progress makes it possible to specify the motility of colonic segments, and any variability in gender. Such analysis opens up promising avenues in studies of motility disorders.
Resumo:
Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.
Resumo:
This paper proposes a new time-domain test of a process being I(d), 0 < d = 1, under the null, against the alternative of being I(0) with deterministic components subject to structural breaks at known or unknown dates, with the goal of disentangling the existing identification issue between long-memory and structural breaks. Denoting by AB(t) the different types of structural breaks in the deterministic components of a time series considered by Perron (1989), the test statistic proposed here is based on the t-ratio (or the infimum of a sequence of t-ratios) of the estimated coefficient on yt-1 in an OLS regression of ?dyt on a simple transformation of the above-mentioned deterministic components and yt-1, possibly augmented by a suitable number of lags of ?dyt to account for serial correlation in the error terms. The case where d = 1 coincides with the Perron (1989) or the Zivot and Andrews (1992) approaches if the break date is known or unknown, respectively. The statistic is labelled as the SB-FDF (Structural Break-Fractional Dickey- Fuller) test, since it is based on the same principles as the well-known Dickey-Fuller unit root test. Both its asymptotic behavior and finite sample properties are analyzed, and two empirical applications are provided.
Resumo:
Multiple organization indices have been used to predict the outcome of stepwise catheter ablation in long-standing persistent atrial fibrillation (AF), however with limited success. Our study aims at developinginnovative organization indices from baseline ECG (i.e. during the procedure, before ablation) in orderto identify the site of AF termination by catheter ablation. Seventeen consecutive male patients (age60 ± 5 years, AF duration 7 ± 5 years) underwent a stepwise catheter ablation. Chest lead V6 was placedin the back (V6b). QRST cancelation was performed from chest leads V1 to V6b. Using an innovativeadaptive harmonic frequency tracking, two measures of AF organization were computed to quantify theharmonics components of ECG activity: (1) the adaptive phase difference variance (APD) between theAF harmonic components as a measure of AF regularity, and (2) and adaptive organization index (AOI)evaluating the cyclicity of the AF oscillations. Both adaptive indices were compared to indices computedusing a time-invariant approach: (1) ECG AF cycle length (AFCL), (2) the spectrum based organizationindex (OI), and (3) the time-invariant phase difference TIPD. Long-standing persistent AF was terminatedinto sinus rhythm or atrial tachycardia in 13/17 patients during stepwise ablation, 11 during left atriumablation (left terminated patients - LT), 2 during the right atrium ablation (right terminated patients -RT), and 4 were non terminated (NT) and required electrical cardioversion. Our findings showed that LTpatients were best separated from RT/NT before ablation by the duration of sustained AF and by AOI onchest lead V1 and APD from the dorsal lead V6b as compared to ECG AFCL, OI and TIPD, respectively. Ourresults suggest that adaptive measures of AF organization computed before ablation perform better thantime-invariant based indices for identifying patients whose AF will terminate during ablation within theleft atrium. These findings are indicative of a higher baseline organization in these patients that could beused to select candidates for the termination of AF by stepwise catheter ablation.© 2013 Elsevier Ltd. All rights reserved.
Resumo:
Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest duration corresponding to the maturity stage (approximately 80% of the total time).
Resumo:
PURPOSE: To use diffusion-tensor (DT) magnetic resonance (MR) imaging in patients with essential tremor who were treated with transcranial MR imaging-guided focused ultrasound lesion inducement to identify the structural connectivity of the ventralis intermedius nucleus of the thalamus and determine how DT imaging changes correlated with tremor changes after lesion inducement. MATERIALS AND METHODS: With institutional review board approval, and with prospective informed consent, 15 patients with medication-refractory essential tremor were enrolled in a HIPAA-compliant pilot study and were treated with transcranial MR imaging-guided focused ultrasound surgery targeting the ventralis intermedius nucleus of the thalamus contralateral to their dominant hand. Fourteen patients were ultimately included. DT MR imaging studies at 3.0 T were performed preoperatively and 24 hours, 1 week, 1 month, and 3 months after the procedure. Fractional anisotropy (FA) maps were calculated from the DT imaging data sets for all time points in all patients. Voxels where FA consistently decreased over time were identified, and FA change in these voxels was correlated with clinical changes in tremor over the same period by using Pearson correlation. RESULTS: Ipsilateral brain structures that showed prespecified negative correlation values of FA over time of -0.5 or less included the pre- and postcentral subcortical white matter in the hand knob area; the region of the corticospinal tract in the centrum semiovale, in the posterior limb of the internal capsule, and in the cerebral peduncle; the thalamus; the region of the red nucleus; the location of the central tegmental tract; and the region of the inferior olive. The contralateral middle cerebellar peduncle and bilateral portions of the superior vermis also showed persistent decrease in FA over time. There was strong correlation between decrease in FA and clinical improvement in hand tremor 3 months after lesion inducement (P < .001). CONCLUSION: DT MR imaging after MR imaging-guided focused ultrasound thalamotomy depicts changes in specific brain structures. The magnitude of the DT imaging changes after thalamic lesion inducement correlates with the degree of clinical improvement in essential tremor.