891 resultados para fine grained ground mass
Resumo:
Interstellar gas abundances (Clayton et al., 1986) suggest that titanium may be bound up in dust and indeed, excess titanium in carbonaceous chondrites is attributed to mixing of interstellar and Solar System materials (Morton, 1974). Fine-grained chondritic interplanetary dust particles (lOPs) of cometary origin are relatively pristine early Solar System materials (Mackinnon and Rietmeijer, 1987; Rietmeijer, 1987) and show chemical and mineralogical signatures related to a pre-solar or nebular origin. For example, large OtH ratios suggest a presolar or interstellar dust component in some chondritic lOPs(Mackinnon and Rietmeijer, 1987). Ti/Si ratios (normalized to bulk CI) in lOPs and carbonaceous chondrite matrices exceed solar abundances but are similar to dust from comet Halley (Jessberger et al., 1987). The Ti-distribution in chondritic lOPs shows major, small-scale « 0.1 urn) variations (Flynn et al., 1978) consistent with heterogeneously distributed Ti-bearingphases. Analytical electron microscope (AEM) studies, in fact, have identified platey grains of Ti-metal, Ti407 and Ti s09 in two different lOPs (Mackinnon and Rietmeijer, 1987). The occurrence of Ti407 was related in situ low-temperature aqueous alteration and therefore implied the presence of BaTi03 (Rietmeijer and Mackinnon, 1984). Yet, the presence ofTis09 in an lOp which shows no evidence of aqueous alteration (Rietmeijer.and McKay, 1986) requires a different interpretation. The distribution of Ti-oxides in chondritic lOPs were investigated with ultra-microtomed thin sections of fluffy chondri tic lOP U2011*B (lSC allocation U2011C2) using a lEOL 2000FX AEM operating at an accelerating voltage of 200kV and with an attached Tracor Northern TN5500 energy dispersive spectrometer.
Resumo:
A mineralogical survey of chondritic interplanetary dust particles (IDPs)showed that these micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class1. Models of chondritic IDP mineral evolution generally ignore the typical (ultra-) fine grain size of consituent minerals which range between 0.002-0.1µm in size2. The chondritic porous (CP) subset of chondritic IDPs is probably debris from short period comets although evidence for a cometary origin is still circumstantial3. If CP IDPs represent dust from regions of the Solar System in which comet accretion occurred, it can be argued that pervasive mineralogical evolution of IDP dust has been arrested due to cryogenic storage in comet nuclei. Thus, preservation in CP IDPs of "unusual meteorite minerals", such as oxides of tin, bismuth and titanium4, should not be dismissed casually. These minerals may contain specific information about processes that occurred in regions of the solar nebula, and early Solar System, which spawned the IDP parent bodies such as comets and C, P and D asteroids6. It is not fully appreciated that the apparent disparity between the mineralogy of CP IDPs and carbonaceous chondrite matrix may also be caused by the choice of electron-beam techniques with different analytical resolution. For example, Mg-Si-Fe distributions of Cl matrix obtained by "defocussed beam" microprobe analyses are displaced towards lower Fe-values when using analytical electron microscope (AEM)data which resolve individual mineral grains of various layer silicates and magnetite in the same matrix6,7. In general, "unusual meteorite minerals" in chondritic IDPs, such as metallic titanium, Tin01-n(Magneli phases) and anatase8 add to the mineral data base of fine-grained Solar System materials and provide constraints on processes that occurred in the early Solar System.
Resumo:
This project advances current understanding of intra-urban rail passengers and their travel experiences in order to help rail industry leaders tailor policy approaches to fit specific, relevant segments of their target population. Using a Q sorting technique and cluster analysis, our preliminary research identified five perspectives occurring in a small sample of rail passengers, who varied in their frequency and location of rail travel as well as certain socio-demographic characteristics. Revealed perspectives (named to capture the gist of their content) included: ‘Rail Travel is About the Destination, Not the Journey’; ‘Despite Challenges, Public Transport is Still the Best Option’; ‘Rail Travel is Fine’; ‘Rail Travel? So Far, So Good’; and ‘Bad Taste for Rail Travel’. This paper discusses each of the perspectives in detail, and considers them in terms of tailored policy implications. An overarching finding from this study is that improving railway travel ‘access’ requires attention to physical, psychological, financial, and social facets of accessibility. For example, designing waiting areas to be more socially functional and comfortable has the potential to increase ridership by addressing social forms of access, decreasing perceived wait times, and making time at the station feel like time well spent. Even at this preliminary stage, the Q sorting technique promises to provide a valuable, holistic albeit fine-grained analysis of passenger attitudes and experiences that will assist industry efforts to increase ridership.
Resumo:
This work presents an assessment of the coprecipitation technique for the reliable production of high-temperature superconducting (HTS) copper-oxide powders in quantities scaled up to 1 kg. This process affords precise control of cation stoichiometry (< 4% relative), occurs rapidly (almost instantaneously) and can be suitably developed for large-scale (e.g. tonne) manufacture of HTS materials. The process is based upon a simple control of the chemistry of the cation solution and precipitation with oxalic acid. This coprecipitation method is applicable to all copper-oxides and has been demonstrated in this work using over thirty separate experiments for the following compositions: YBa2Cu3O7-δ, Y2BaCuO5 and YBa2Cu4O8. The precursor powders formed via this coprecipitation process are fine-grained (∼ 5-10 nm), chemically homogeneous at the nanometer scale and reactive, Conversion to phase-pure HTS powders can therefore occur in minutes at appropriate firing temperatures. © 1995.
Resumo:
Samples from the Callide Coal Measures, Queensland, Australia, containing the minor maceral, micrinite, have been studied using optical and electron-optical techniques to determine the precise compositional and structural nature of micrinite when in association with vitrinite macerals. Emphasis has been placed on direct spatial correlation of optical and electron-optical data due to the fine grain size (<1μm) of micrinite and its relatively low abundance compared with other macerals in the Callide Basin coals. Precise elemental, morphological and structural data, including electron diffraction, provides unambiguous evidence for the presence of kaolinite in the component known as micrinite. Indeed, micrinite consists predominantly of fine-grained kaolinite (>90 per cent of the component) and, as such, should not be considered a maceral.
Resumo:
Detailed analytical electron microscope analyses of four fine-grained chondritic porous interplanetary dust particles (IDPs)reveal the presence of titanium oxide Magneli phases, TinO2n-1 (n=4,5,6), and rare Ti-metal. The titanium minerals are indigenous to these chondritic IDPs. The association of Magneli phases, Ti-metal, and carbonaceous material in chondritic IDPs, along with the grain size distributions support in situ solid carbon gasification in these extraterrestrial particles. The active catalyst in this process is titanium metal that we infer may be of interstellar origin. This favorable catalysis uniquely leads to the formation of Magneli phases. As chondritic IDPs may be solid debris of short-period comets, our data indicate that nuclei of short-period comets may show distinctive chemical reactions that lead to Ti-mineral assemblages that typically include Magneli phases. The proposed model provides a plausible mechnism to explain the higher solid carbon content of chondritic IDPs relative to bulk carbon abundances typical for carbonaceous chondrite matrices that represent another type of more evolved, that is, metamorphosed, undifferentiated solar system bodies.
Resumo:
Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25C) after aggregate formation.
Resumo:
CARBONACEOUS chondrites provide valuable information as they are the least altered examples of early Solar System material1. The matrix constitutes a major proportion of carbonaceous chondrites. Despite many past attempts, unambiguous identification of the minerals in the matrix has not been totally successful2. This is mainly due to the extremely fine-grained nature of the matrix phases. Recently, progress in the characterisation of these phases has been made by electron diffraction studies3,4. We present here the direct observation, by high resolution imaging, of phases in carbonaceous chondrite matrices. We used ion-thinned sections from the Murchison C2(M) meteorite for transmission electron microscopy. The Murchison matrix contains both ordered and disordered inter-growths of serpentine-like and brucite-like layers. Such mixed-layer structures are new types of layer silicates. © 1979 Nature Publishing Group.
Resumo:
The Analytical Electron Microscope (AEM), with which secondary X-ray emission from a thin (<150nm), electron-transparent material is measured, has rapidly become a versatile instrument for qualitative and quantitative elemental analyses of many materials, including minerals. With due regard for sources of error in experimental procedures, it is possible to obtain high spatial resolution (~20nm diameter) and precise elemental analyses (~3% to 5% relative) from many silicate minerals. In addition, by utilizing the orientational dependence of X-ray emission for certain multi-substituted crystal structures, site occupancies for individual elements within a unit cell can be determined though with lower spatial resolution. The relative ease with which many of these compositional data may be obtained depends in part on the nature of the sample, but, in general, is comparable to other solid state analytical techniques such as X-ray diffraction and electron microprobe analysis. However, the improvement in spatial resolution obtained with the AEM (up to two orders of magnitude in analysis diameter) significantly enhances interpretation of fine-grained assemblages in many terrestrial or extraterrestrial rocks.
Resumo:
In the last decade, smartphones have gained widespread usage. Since the advent of online application stores, hundreds of thousands of applications have become instantly available to millions of smart-phone users. Within the Android ecosystem, application security is governed by digital signatures and a list of coarse-grained permissions. However, this mechanism is not fine-grained enough to provide the user with a sufficient means of control of the applications' activities. Abuse of highly sensible private information such as phone numbers without users' notice is the result. We show that there is a high frequency of privacy leaks even among widely popular applications. Together with the fact that the majority of the users are not proficient in computer security, this presents a challenge to the engineers developing security solutions for the platform. Our contribution is twofold: first, we propose a service which is able to assess Android Market applications via static analysis and provide detailed, but readable reports to the user. Second, we describe a means to mitigate security and privacy threats by automated reverse-engineering and refactoring binary application packages according to the users' security preferences.
Resumo:
Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.
Resumo:
The study adopts a multi-dimensional construct of self-esteem to examine the relationship between self-perception and psychological adjustment in order to identify specific dimensions that discriminate between disturbed and non-disturbed groups. The disturbed group (n = 33) is derived from a clinical sample and are matched with a non-disturbed group (n = 33) of adolescents. Results indicate that dimensional self-concept scores are significantly lower for clinical subjects while there are no significant differences between groups on the mathematics, honesty, and physical ability dimensions. These findings provide a more fine grained understanding of the relationship between self-esteem and psychological adjustment and emphasize the need to examine self-esteem in terms of its particular dimensions.
Resumo:
Fine-grained matrices in carbonaceous chondrites and small, micron-sized inclusions in achondrites can be characterized effectively using high resolution transmission electron microscopy (HRTEM).
Resumo:
Many software applications extend their functionality by dynamically loading executable components into their allocated address space. Such components, exemplified by browser plugins and other software add-ons, not only enable reusability, but also promote programming simplicity, as they reside in the same address space as their host application, supporting easy sharing of complex data structures and pointers. However, such components are also often of unknown provenance and quality and may be riddled with accidental bugs or, in some cases, deliberately malicious code. Statistics show that such component failures account for a high percentage of software crashes and vulnerabilities. Enabling isolation of such fine-grained components is therefore necessary to increase the stability, security and resilience of computer programs. This thesis addresses this issue by showing how host applications can create isolation domains for individual components, while preserving the benefits of a single address space, via a new architecture for software isolation called LibVM. Towards this end, we define a specification which outlines the functional requirements for LibVM, identify the conditions under which these functional requirements can be met, define an abstract Application Programming Interface (API) that encompasses the general problem of isolating shared libraries, thus separating policy from mechanism, and prove its practicality with two concrete implementations based on hardware virtualization and system call interpositioning, respectively. The results demonstrate that hardware isolation minimises the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution’s correctness. This thesis concludes that, not only is it feasible to create such isolation domains for individual components, but that it should also be a fundamental operating system supported abstraction, which would lead to more stable and secure applications.