982 resultados para exchange interaction
Resumo:
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. on the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The tegu lizard Tupinambis merianae exhibits an episodic ventilatory pattern when dormant at 17 degrees C but a uniform ventilatory pattern when dormant at 25 degrees C. At 17 degrees C, ventilatory episodes were composed of 1-22 breaths interspaced by non-ventilatory periods lasting 1.8-26min, Dormancy at the higher body temperature was accompanied by higher rates of O-2 consumption and ventilation. The increase in ventilation was due only to increases in breathing frequency with no change observed in tidal volume. The air convection requirement for O-2 did not differ at the two body temperatures. The respiratory quotient was 0.8 at 17 degrees C and 1.0 at 25 degrees C. We found no consistent relationship between expired gas composition and the start/end of the ventilatory period during episodic breathing at 17 degrees C. However, following non-ventilatory periods of increasing duration, there was an increase in the pulmonary O-2 extraction that was not coupled to an equivalent increase in elimination of CO2 from the lungs. None of the changes in the variables studied could alone explain the initiation/termination of episodic ventilation in the tegus, suggesting that breathing episodes are shaped by a complex interaction between many variables. The estimated oxidative cost of breathing in dormant tegus at 17 degrees C was equivalent to 52.3% of the total metabolic rate, indicating that breathing is the most costly activity during dormancy.
Resumo:
The subtracted kernel approach is shown to be a powerful method to be implemented recursively in scattering equations with regular plus point-like interactions. The advantages of the method allows one to recursively renormalize the potentials, with higher derivatives of the Dirac-delta, improving previous results. The applicability of the method is verified in the calculation of the 1 So nucleon-nucleon phase-shifts, when considering a potential with one-pion-exchange plus a contact interaction and its derivatives. The S-1(0) renormalization parameters are fitted to the data. The method can in principle be extended to any derivative order of the contact interaction, to higher partial waves and to coupled channels. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Gamow-Teller resonance in Pb-208 is discussed in the context of a self-consistent RPA, based on the relativistic mean field theory. We inquire on the possibility of substituting the phenomenological Landau-Migdal force by a microscopic nucleon-nucleon interaction, generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple extraction of the contact terms from the resulting nucleon-nucleon interaction. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The aim of this work is to show how to renormalize the nucleon-nucleon interaction at next-to-next-to-leading order using a. systematic subtractive renormalization approach with multiple subtractions. As an example, we calculate the phase shifts for the partial waves with total angular momentum J = 2. The intermediate driving terms at each recursive step as well as the renormalized T-matrix are also shown. We conclude that our method is reliable for singular potentials such as the two-pion exchange and derivative contact interactions.
Resumo:
We present the actual state of affairs and future perspectives in the study of a quantum system of a collection of positronium (Ps) atoms. The interaction of a Ps atom with other atoms and molecules and specially with another Ps atom is described in some detail as Ps-Ps interaction should play a crucial role in the dynamics of an assembly of Ps atoms. Using a simple model-exchange potential, we could describe the available experimental results of Ps scattering reasonably well. The present scenario of the observation of Ps2 molecule, Ps Bose-Einstein condensate (BEC) and the annihilation laser from a Ps BEC is presented. Possibilities of a Ps BEC formation via laser cooling of Ps atoms and via Ps formation in cavities are considered and difficulties with each procedure discussed (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with an unusual application for a copolymer of styrene-1 % divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)(3)-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.
Resumo:
We argue that the minimal chiral background for the two-pion exchange nucleon-nucleon (NN) interaction has nowadays a rather firm conceptual basis, which entitles it to become a standard ingredient of any modern potential. In order to facilitate applications, we present a parametrized version of a configuration space potential derived previously. We than use it to assess the phenomenological contents of some existing NN potentials.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that the tail of the chiral two-pion exchange nucleon-nucleon potential is proportional to the pion-nucleon (πN) scalar form factor and discuss how it can be translated into effective scalar meson interactions. We then construct a kernel for the process NN → πNN, due to the exchange of two pions, which may be used in either three-body forces or pion production in NN scattering. Our final expression involves a partial cancellation among three terms, due to chiral symmetry, but the net result is still important. We also find that, at large internucleon distances, the kernel has the same spatial dependence as the central NN potential and we produce expressions relating these processes directly.
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.
Resumo:
Includes bibliography