940 resultados para enchancesprotective immunity
Resumo:
Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.
Resumo:
The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.
Microbiota exposure during the pregnancy and the development of the innate immunity of the offspring
Microbiota exposure during the pregnancy and the development of the innate immunity of the offspring
Resumo:
Prosenescence therapy has recently emerged as a novel therapeutic approach for treating cancer. However, this concept is challenged by conflicting evidence showing that the senescence-associated secretory phenotype (SASP) of senescent tumor cells can have pro- as well as antitumorigenic effects. Herein, we report that, in Pten-null senescent tumors, activation of the Jak2/Stat3 pathway establishes an immunosuppressive tumor microenvironment that contributes to tumor growth and chemoresistance. Activation of the Jak2/Stat3 pathway in Pten-null tumors is sustained by the downregulation of the protein tyrosine phosphatase PTPN11/SHP2, providing evidence for the existence of a novel PTEN/SHP2 axis. Importantly, treatment with docetaxel in combination with a JAK2 inhibitor reprograms the SASP and improves the efficacy of docetaxel-induced senescence by triggering a strong antitumor immune response in Pten-null tumors. Altogether, these data demonstrate that immune surveillance of senescent tumor cells can be suppressed in specific genetic backgrounds but also evoked by pharmacological treatments.
Resumo:
The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell-specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8(+) T cells from T(ΔGpx4/ΔGpx4) mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8(+) and CD4(+) T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.
Resumo:
Roots respond dynamically to belowground herbivore attack. Yet, little is known about the mechanisms and ecological consequences of these responses. Do roots behave the same way as leaves, or do the paradigms derived from aboveground research need to be rewritten? This is the central question that we tackle in this article. To this end, we review the current literature on induced root defenses and present a number of experiments on the interaction between the root herbivore Diabrotica virgifera and its natural host, maize. Currently, the literature provides no clear evidence that plants can recognize root herbivores specifically. In maize, mild mechanical damage is sufficient to trigger a root volatile response comparable to D. virgifera induction. Interestingly, the jasmonate (JA) burst, a highly conserved signaling event following leaf attack, is consistently attenuated in the roots across plant species, from wild tobacco to Arabidopsis. In accordance, we found only a weak JA response in D. virgifera attacked maize roots. Despite this reduction in JA-signaling, roots of many plants start producing a distinct suite of secondary metabolites upon attack and reconfigure their primary metabolism. We, therefore, postulate the existence of additional, unknown signals that govern induced root responses in the absence of a jasmonate burst. Surprisingly, despite the high phenotypic plasticity of plant roots, evidence for herbivore-induced resistance below ground is virtually absent from the literature. We propose that other defensive mechanisms, including resource reallocation and compensatory growth, may be more important to improve plant immunity below ground.