257 resultados para electroanalysis
Resumo:
A simple and attractive method for quantification of ascorbic acid (AA) in beers, soda, natural juices and commercial vitamin C tablets was achieved by combining Bow injection analysis and amperometric detection. An array of gold microelectrodes electrochemically modified by deposition of palladium was employed as working electrode which was almost unaffected by fouling effects. Ascorbic acid was quantified in beverages and vitamin tablets using amperometric differential measurements. This method is based on three steps involving the flow injection of: 1) the sample plus a standard addition of AA, 2) the pure sample, and 3) the enzymatically-treated sample. The enzymatic treatment was carried out with Cucumis sativus tissue, which is a rich source of ascorbate oxidase, at pH 7. The calibration plots for freshly prepared ascorbic acid standards were very linear in the concentration range of 0.18-1.8 mg L-1 with a relative standard deviation (RSD) < 1%, while for real samples the deviations were between 2.7% to 8.9%.
Resumo:
The design and characteristics of a novel electrochemical system, which uses a drop as a renewable electroanalytical sensor, are described. This article describes the performance of the electrochemical system, the coupling of the experimental arrangement with flow injection technique and a demonstration of its applicability for the measurement of sulfide. The method is based on renewable drops of ferricyanide ions, buffered by borate. The ferrocyanide ions, product of the reaction between ferricyanide and sulfide ions, are oxidized on a platinum microelectrode and the current measured is related to sulfide concentration. The measurements can be done in continuous or static flow mode. In continuous mode, the detection limit is 5.0 x 10(-5) mol L-1.
Resumo:
Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.
Resumo:
The electrochemical reduction of two reactive dyes: Procion Red HE-3B 9 (RR120) and Procion Green HE-4BD (RG19) was investigated using cyclic voltammetry, differential pulse and DC, polarography, chronoamperometry and controlled potential electrolysis at mercury electrodes. The bis-azo groups of the RR120 dye are reduced together in one single step of four electrons, the bis-azo groups of the RG19 dye are reduced in two steps owing to the difference in the electron densities promoted by the different substituents in the benzene rings adjacent to the azo groups. The bis-monochlorotriazine reactive groups in both dyes are reduced only in acidic medium in their protonated form, leading to the reduction of the triazine groups. The reduction mechanism of both reactive dyes is discussed. Both dyes can be quantified in aqueous medium by differential pulse polarography in the concentration range of 1 x 10(-7) mol L-1 to 1 x 10(-5) mol L-1 by monitoring the reduction of the chromophore group or the reactive group.
Resumo:
Cromoglycate is accumulated on a poly-L-lysine (PLL) modified carbon electrode best from pH 4 solution, where it is anionic and the PLL is cationic, and at which pH the cromoglycate gives a good reduction peak at -0.82 V. The PLL film can be regenerated readily by washing the electrode with 3 M sodium hydroxide solution, in which the PLL is deprotonated. Regeneration of the film is not required as frequently when larger amounts of PLL are incorporated into it. This allows standard addition procedures to be carried out without regenerating the electrode. Linear calibration graphs have been obtained typically in the range 0.1 - 1.5 mug ml(-1). Detection limits have been calculated to be 10 ng ml(-1). The standard addition method has been applied satisfactorily to diluted urine solutions. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
A film of poly-L-lysine (PLL) adheres better to the surface of a glassy carbon electrode when the PLL is partially cross-linked by means of glutaraldehyde. A film composition of 97.5% PLL/2.5% glutaraldehyde gives good adhesion and retains the anionic exchange capability of the PLL. The performance of the film was tested with hexacyanoferrate(III) using electrochemical and nonelectrochemical accumulation.
Resumo:
This paper proposes a simple methodology for mercury quantification in natural water by stripping chronopotentiometry at constant current, using gold (film) electrodes constructed from recordable CDs in stationary cell. The proposed method allows the direct measurement of labile mercury in natural waters. To quantify total mercury, a robust and low cost UV irradiation system was developed for the degradation of organic constituents of water. The proposed system presents such advantages as excellent sensitivity, low cost, versatility, and smaller dimensions (portability for on-field applications) when compared with other techniques (ICP, GFAAS, fluorimetry) traditionally utilized for mercury quantification. A large linear region of responses was observed, situated over the range 0.02 - 200 μ g L-1. Various experimental parameters were optimized and the system allowed quantifications in natural samples, with detection limit of 8 ng L-1 and excellent reproducibility (RSD of 1.4% for 48 repetitive measurements using a 10 μ g L-1 mercury solution). Different metal ions were evaluated, including copper, as possible interferences on stripping mercury signals. Applications of the new method were demonstrated for the analysis of certified and groundwater samples spiked with a known amount of mercury and for the quantification of methylmercury in synthetic oceanic water, originally utilized for fishes contamination experiment.
Resumo:
The detection limit (about 0.017 mu g mL(-1)) for voltammetric determination of iodide (peak at +0.87 V vs. Ag/AgCl at pH 2) at a glutaraldehyde-cross-linked poly-L-lysine modified glassy carbon electrode involving oxidation to iodine was found to be several orders of magnitude lower than that for the voltammetric determination on a bare glassy carbon electrode. This method was applied successfully to the determination of iodide in two medicinal formulations. Idoxuridine was determined indirectly at the same electrode by accumulating it first at -0.8 V vs. Ag/AgCl. At this potential the C-I bond in the adsorbed idoxuridine is reduced giving iodide, which is then determined at the modified electrode. The method was successfully applied to the determination of idoxuridine in a urine sample.
Resumo:
A sensor based on graphite electrode modified with palladium-platinum-palladium film is proposed for phosphite determination by flow-injection amperometry. The modified electrode was prepared by a sequential cathodic deposition of Pd, Pt and Pd on a graphite electrode from 0.5% m/v PdCl2 + 28% m/v NH4OH and 2% m/v H2PtCl6 + 10% v/v H2SO4 solutions. After suitable conditioning, the electrode showed catalytic activity for phosphite oxidation when 0. 15 V was applied. The proposed system handles approximately 50 samples per hour (0.0.1 - 0.05 mol L-1 Na-2 HPO3; R-2 = 0.9997), consuming ca. 70 mu L of sample per determination. The limit of detection and amperometric sensibility were 5 X 10(-4) mol L-1 and 1.5 mA L mol(-1), respectively. The proposed method was applied to analysis of fertilizer samples without pre-treatment. Results are in agreement with those obtained by spectrophotometry and titrimetry at 95% confidence level and good recoveries (96-109%) of spiked samples were found. Relative standard deviation (n=12) of a 0.01 mol L-1 Na2HPO3 sample was 2%. The useful lifetime of modified electrode was around 220 determinations. For routine purposes it means that this electrode can be continuously used for 5 hours.
Resumo:
The purpose of this paper is to develop an electroanalytical method based on square-wave voltammetry (SWV) for the determination of the solvent blue 14 (SB-14) in fuel samples. The electrochemical reduction of SB-14 at glassy carbon electrode in a mixture of Britton-Robinson buffer with N,N-dimethyiformamide (1:1, v/v) presented a well-defined peak at-0.40 V vs. Ag/AgCl. All parameters of the SWV technique were optimized and the electroanalytical method presented a linear response from 1.0 x 10(-6) to 6.0 x 10(-6) mol L-1 (r = 0.998) with a detection limit of 2.90 x 10(-7) mol L-1. The developed method was successfully utilized in the quantification of the dye SB-14 in kerosene and alcohol samples with average recovery from 93.00 to 98.10%.
Resumo:
Substantial improvements in the selectivity of electrochemical measurements of trace nucleic adds are obtained by using membrane-covered carbon disk electrodes. Access to the electrode surface can be manipulated via a judicious choice of the membrane molecular weight cutoff (MWCO). The resulting separation step, performed in situ at the electrode surface, adds a new dimension of selectivity based on molecular size to electroanalysis of nucleic acids, Transport properties are evaluated with respect to the oligonucleotide length and membrane MWCO. A highly selective response is observed for synthetic oligonucleotides in the presence of otherwise interfering chromosomal DNAs. Discrimination among oligonucleotides of different lengths is also possible, Short accumulation periods (1-5 min) are sufficient for convenient measurements of low milligram per liter concentrations.
Resumo:
Nanoporous iron (hydr) oxide electrodes are evaluated as phosphate sensors using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The intensity of the reduction peak current (I-cp) of the ferrihydrite working electrode is tied to phosphate concentration at low pH; however, a hematite electrode combined with the use of EIS provided reliable sensing data at multiple pH values. Nanoporous hematite working electrodes produced an impedance phase component (theta) that shifts with increasing phosphate, and, at chosen frequencies, theta values were fitted for the range 1 nM to 0.1 mM phosphate at pH 4 and pH 7 in 5 mM NaClO4.
Resumo:
In this communication we report a proof of concept study of the use of cyclic voltammetry with a polyeugenol-modified glassy carbon (GC) electrode to selectively detect L-cysteine in the presence of both DL-homocysteine and glutathione in perchloric acid. The formation of a polyeugenol-modified gold electrode is also reported for the first time.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.