961 resultados para ecological effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic pollution and eutrophication are both prominent issues in the aquaculture ponds of Taiwan. It is important to study the effects of arsenic on algal growth and toxin production in order to assess the ecological risk of arsenic pollution, or at least to understand naturally occurring ponds. The sensitivity of algae to arsenate has often been linked to the structural similarities between arsenate and phosphate. Thus, in this study we examined the effects of arsenate (10(-8) to 10(-4) M) on Microcystis aeruginosa TY-1 isolated from Taiwan, under two phosphate regimes. The present study showed that M. aeruginosa TY-1 was arsenate tolerant up to 10(-4) M, and that this tolerance was not affected by extracellular phosphate. However, it seems that extracellular phosphate contributed to microcystin production and leakage by M. aeruginosa in response to arsenate. Under normal phosphate conditions, total toxin yields after arsenate treatment followed a typical inverted U-shape hormesis, with a peak value of 2.25 +/- 0.06 mg L-1 in the presence of 10(-7) M arsenate, whereas 10(-8) to 10(-6) M arsenate increased leakage of similar to 75% microcystin. Under phosphate starvation, total toxin yields were not affected by arsenate, while 10(-6) and 10(-5) M arsenate stimulated microcystin leakage. It is suggested that arsenate may play a role in the process of microcystin biosynthesis and excretion. Given the arsenic concentrations in aquaculture ponds in Taiwan, arsenate favors survival of toxic M. aeruginosa in such ponds, and arsenate-stimulated microcystin production and leakage may have an impact on the food chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both arsenic pollution and eutrophication are prominent environmental issues when considering the problem of global water pollution. It is important to reveal the effects of arsenic species on cyanobacterial growth and toxin yields to assess ecological risk of arsenic pollution or at least understand naturally occurring blooms. The sensitivity of cyanobacteria to arsenate has often been linked to the structural similarities of arsenate and phosphate. Thus, we approached the effect of arsenate with concentrations from 10(-8) to 10(-4) M on Microcystis strain PCC7806 under various phosphate regimes. The present study showed that Microcystis strain PCC7806 was arsenate tolerant up to 10(-4) M. And such tolerance was without reference to both content of intra- and extra-cellular phosphate. It seems that arsenate involved the regulation of microcystin synthesis and cellular polyphosphate contributed to microcystin production of Microcystis responding to arsenate, since there was a positive linear correlation of the cellular microcystin quota with the exposure concentration of arsenate when the cells were not preconditioned to phosphate starvation. It is presumed that arsenate could help to actively export microcystins from living Microcystis cells when preconditioned to phosphate starvation and incubated with the medium containing 1 mu M phosphate. This study firstly provided evidence that microcystin content and/or release of Microcystis might be impacted by arsenate if it exists in harmful algal blooms. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24:97 94, 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both organic pollution and eutrophication are prominent environmental issues concerning water pollution in the world. It is important to reveal the effects of organic pollutants on algal growth and toxin production for assessing ecological risk of organic pollution. Since nonylphenol (NP) is a kind of persistent organic pollutant with endocrine disruptive effect which exists ubiquitously in environments, NP was selected as test compound in our study to study the relationship between NP stress and Microcystis growth and microcystin production. Our study showed that responses of toxic and nontoxic Microcystis aeruginosa to NP stress were obviously different. The growth inhibition test with NP on M. aeruginosa yielded effect concentrations EbC50 values within this range of 0.67-2.96 mg/L. The nontoxic M. aeruginosa strains were more resistant to NP than toxic strains at concentration above 1 mg/L. Cell growth was enhanced by 0.02-0.2 mg/L NP for both toxic and nontoxic strains, suggesting a hormesis effect of NP on M. aeruginosa. Both toxic and nontoxic strains tended to be smaller with increasing NP. But with the increased duration of the experiment, both the cell size and the growth rate began to resume, suggesting a quick adaptation of M. aeruginosa to adverse stress. NP of 0.05-0.5 mg/L significantly promoted microcystin production of toxic strain PCC7820, suggesting that NP might affect microcystin production of some toxic M. aeruginosa in the field. Our study showed that microcystin excretion was species specific that up to 75% of microcystins in PCC7820 were released into solution, whereas > 99% of microcystins in 562 remained in algal cells after 12 days' incubation. NP also significantly influenced microcystin release into cultural media. The fact that NP enhanced growth and toxin production of M. aeruginosa at low concentrations of 0.02-0.5 mg/L that might be possibly found in natural freshwaters implies that low concentration of NP may favor survival of M. aeruginosa in the field and may play a subtle role in affecting cyanobacterial blooms and microcystin production in natural waters. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Afforestation in China's subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests, plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover, we investigated SOC and its stable C isotope (delta C-13) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C, delta C-13 and total nitrogen. Similarly to the vertical distribution of SOC in natural forests, SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC delta C-13 composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass C-13 composition. Soil profiles with a change in photosynthetic pathway had a more complex C-13 isotope composition distribution. During the 20 years after plantation establishment, the soil organic matter sources influenced both the delta C-13 distribution with depth, and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of temperature and food availability on the life history strategy of the planktonic copepod Calanus sinicus in the southern Yellow Sea in summer were studied in this paper. The fifth copepodite stage (CV) dominates the population in the central part of the southern Yellow Sea, where the Yellow Sea Cold Water Mass (YSCWM) occurs below the thermocline. Incubation experiments were conducted on CV C. sinicus caught from the YSCWM to examine the effects of temperature and food availability. Temperature at the surface (27degreesC) is lethal to CVs regardless of food availability. At the temperature in the middle of the thermocline (18degreesC), survival time of the specimens depends on food availability, being similar to20 days in treatments without extra food supply. At the temperature in the YSCWM (9degreesC), most animals survive at the end of 27 day incubation even in treatments without food supply. Developmental rate of CVs at 9degreesC without extra food supply is extremely low. The increase of either temperature or food supply promotes the developmental rate of CVs. According to these results, the surface layers with high temperature and low food abundance are detrimental for the survival and reproduction of C. sinicus. Low temperature and low food availability in the YSCWM help CV to maintain a much lower developmental rate and higher survival rate. The ecological trait of C. sinicus in the southern Yellow Sea in summer cannot be sufficiently explained solely by the effects of temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of stocking density on seston dynamics and filtering and biodeposition by the suspension-cultured Zhikong scallop Chlamys farreri Jones et Preston in a eutrophic bay (Sishili Bay, northern China), were determined in a 3-month semi-field experiment with continuous flow-through seawater from the bay. Results showed that the presence of the scallops could strongly decrease seston and chlorophyll a concentrations in the water column. Moreover, in a limited water column, increasing scallop density could cause seston depletion due to scallop's filtering and biodeposition process, and impair scallop growth. Both filtration rate and biodeposition rate of C. farreri showed significant negative correlation with their density and positive relationship with seston concentration. Calculation predicts that the daily removal of suspended matter from water column by the scallops in Sishili Bay ecosystem can be as high as 45% of the total suspended matter; and the daily production of biodeposits by the scallops in early summer in farming zone may amount to 7.78 g m(-2), with daily C, N and P biodeposition rates of 3.06 x 10(-1), 3.86 x 10(-2) and 9.80 x 10(-3) g m(-2), respectively. The filtering and biodeposition by suspension-cultured scallops could substantially enhance the deposition of total suspended particulate material, suppress accumulation of particulate organic matter in water column, and increase the flux of C, N and P to benthos, strongly enhancing pelagic-benthic coupling. It was suggested that the filtering-biodeposition process by intensively suspension-cultured bivalve filter-feeders could exert strong top-down control on phytoplankton biomass and other suspended particulate material in coastal ecosystems. This study also indicated that commercially suspension-cultured bivalves may simultaneously and potentially aid in mitigating eutrophication pressures on coastal ecosystems subject to anthropogenic N and P loadings, serving as a eutrophic-environment bioremediator. The ecological services (e.g. filtering capacity, top-down control, and benthic-pelagic coupling) functioned by extractive bivalve aquaculture should be emphasized in coastal ecosystems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how dynamic ecological communities respond to anthropogenic drivers of change such as habitat loss and fragmentation, climate change and the introduction of alien species requires that there is a theoretical framework able to predict community dynamics. At present there is a lack of empirical data that can be used to inform and test predictive models, which means that much of our knowledge regarding the response of ecological communities to perturbations is obtained from theoretical analyses and simulations. This thesis is composed of two strands of research: an empirical experiment conducted to inform the scaling of intraspecific and interspecific interaction strengths in a three species food chain and a series of theoretical analyses on the changes to equilibrium biomass abundances following press perturbations. The empirical experiment is a consequence of the difficulties faced when parameterising the intraspecific interaction strengths in a Lotka-Volterra model. A modification of the dynamic index is used alongside the original dynamic index to estimate intraspecific interactions and interspecific interaction strengths in a three species food. The theoretical analyses focused on the effect of press perturbations to focal species on the equilibrium biomass densities of all species in the community; these perturbations allow for the quantification of a species total net effect. It was found that there is a strong and consistent positive relationship between a species body size and its total net effect for a set of 97 synthetic food webs and also for the Ythan Estuary and Tuesday Lake food webs (empirically described food webs). It is shown that ecological constraints (due to allometric scaling) on the magnitude of entries in the community matrix cause the patterns observed in the inverse community matrix and thus explain the relationship between a species body mass and its total net effect in a community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution occurring over contemporary time scales can have important effects on populations, communities, and ecosystems. Recent studies show that the magnitude of these effects can be large and can generate feedbacks that further shape evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is increasingly evident that evolutionary processes play a role in how ecological communities are assembled. However the extend to which evolution influences how plants respond to spatial and environmental gradients and interact with each other is less clear. In this dissertation I leverage evolutionary tools and thinking to understand how space and environment affect community composition and patterns of gene flow in a unique system of Atlantic rainforest and restinga (sandy coastal plains) habitats in Southeastern Brazil.

In chapter one I investigate how space and environment affect the population genetic structure and gene flow of Aechmea nudicaulis, a bromeliad species that co-occurs in forest and restinga habitats. I genotyped seven microsatellite loci and sequenced one chloroplast DNA region for individuals collected in 7 pairs of forest / restinga sites. Bayesian genetic clustering analyses show that populations of A. nudicaulis are geographically structured in northern and southern populations, a pattern consistent with broader scale phylogeographic dynamics of the Atlantic rainforest. On the other hand, explicit migration models based on the coalescent estimate that inter-habitat gene flow is less common than gene flow between populations in the same habitat type, despite their geographic discontinuity. I conclude that there is evidence for repeated colonization of the restingas from forest populations even though the steep environmental gradient between habitats is a stronger barrier to gene flow than geographic distance.

In chapter two I use data on 2800 individual plants finely mapped in a restinga plot and on first-year survival of 500 seedlings to understand the roles of phylogeny, functional traits and abiotic conditions in the spatial structuring of that community. I demonstrate that phylogeny is a poor predictor of functional traits in and that convergence in these traits is pervasive. In general, the community is not phylogenetically structured, with at best 14% of the plots deviating significantly from the null model. The functional traits SLA, leaf dry matter content (LDMC), and maximum height also showed no clear pattern of spatial structuring. On the other hand, leaf area is strongly overdispersed across all spatial scales. Although leaf area overdispersion would be generally taken as evidence of competition, I argue that interpretation is probably misleading. Finally, I show that seedling survival is dramatically increased when they grow shaded by an adult individual, suggesting that seedlings are being facilitated. Phylogenetic distance to their adult neighbor has no influence on rates of survival though. Taken together, these results indicate that phylogeny has very limited influence on the fine scale assembly of restinga communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series; one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere.