860 resultados para ecological burning
Resumo:
By recalling mankind's path during past 50 years in the present article, we mainly highlight the significance of environmental issues today. In particular, two major factors leading to environment deterioration in China such as water resources and coal burning are stressed on. Present-day environmental issues are obviously interdisciplinary, of multiple scales and multi-composition in nature. Therefore, a process-based approach for environment research is absolutely necessarily. A series of sub-processes, either physical, chemical or biological, are subsequently analyzed in order to established reasonable parameterization scheme and credible comprehensive model. And we are now in a position to answer questions still open to us, improve existing somewhat empirical engineering approaches and enhance quantitative accuracy in prediction. To illustrate this process-based research approach, three typical examples associated with the Yangtze River Estuary, Loess Plateau and Tenggeli Desert environments have been dealt with respectively. A theoretical model of vertical flow field accounting for runoff and tide interaction has been established to delineate salinity and sediment motion which are responsible for the formation of mouth bar at the outlet and the ecological evolution there. A kinematic wave theory combined with the revised Green-Ampt infiltration formula is applied to the prediction of runoff generation and erosion in three types of erosion region on the Loess Plateau. Three approaches describing water motion in SPAC system in arid areas at different levels have been improved by introducing vegetation sub-models. However, we have found that the formation of a dry sandy layer and biological crust skin are additional primary causes leading to deterioration of water supply and succession of ecological system.
Resumo:
A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOz concentration is reduced. The same result can be obtained from chemical equilibrium analysis.
Resumo:
A free-burning, high-intensity argon arc at atmospheric pressure was modelled during the evaporation of copper from the cathode. The effect of cathode evaporation on the temperature, mass flow, current flow and Cu concentration was studied for the entire plasma region. The copper evaporates from the tip of the cathode with an evaporation rate of 1 mg s-1. The copper vapour in the cathode region has a velocity of 210 m s-1 with a mass concentration of above 90% within 0.5 mm from the arc axis. The vapour passes from the cathode toward the anode with a slight diffusion in the argon plasma. Higher temperatures and current densities were calculated in the core of the arc caused by the cathode evaporation.
Resumo:
(Document pdf contains 19 pages)
Resumo:
The bibliography is to highlight impacts on fisheries and livelihoods attributed to coral reef marine protected areas in Pacific Island countries and territories. Included in this collection is literature that reports various forms of reef area management practiced in Pacific Island countries: reserves, sanctuaries, permanent or temporary closed areas, community and traditional managed areas. (Document contains 36 pages)
Resumo:
pdf contains 47 pages
Resumo:
In the kelp forests of Carmel Bay there are six common rockfishes (Sebastes). Three are pelagic (S. serranoides, S. mystinus, and S. melanops) and two are demersal (S. chrysomelas and S. carnatus). The sixth (S. atrovirens) is generally found a few meters above the sea floor. The pelagic rockfishes which are spatially overlapping have different feeding habits. All rockfishes except S. mystinus utilize juvenile rockfishes as their primary food source during the upwelling season. Throughout the non-upwelling season, most species consume invertebrate prey. The pelagic rockfishes have shorter maxillary bones and longer gill rakers than their demersal congeners, both specializations for taking smaller prey. They also have longer intestines, enabling them to utilize less digestable foods. S. mystinus, which has the longest intestine, may be able to use algae as a food source. Fat reserves are accumulated from July through October, when prey is most abundant. Fat is depleted throughout the rest of the year as food becomes scarce and development of sexual organs takes place. Gonad development occurs from November through February for all species except S. atrovirens.
Resumo:
As defined, the modeling procedure is quite broad. For example, the chosen compartments may contain a single organism, a population of organisms, or an ensemble of populations. A population compartment, in turn, could be homogeneous or possess structure in size or age. Likewise, the mathematical statements may be deterministic or probabilistic in nature, linear or nonlinear, autonomous or able to possess memory. Examples of all types appear in the literature. In practice, however, ecosystem modelers have focused upon particular types of model constructions. Most analyses seem to treat compartments which are nonsegregated (populations or trophic levels) and homogeneous. The accompanying mathematics is, for the most part, deterministic and autonomous. Despite the enormous effort which has gone into such ecosystem modeling, there remains a paucity of models which meets the rigorous &! validation criteria which might be applied to a model of a mechanical system. Most ecosystem models are short on prediction ability. Even some classical examples, such as the Lotka-Volterra predator-prey scheme, have not spawned validated examples.
Resumo:
A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)
Resumo:
Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)
Ecological study of aquatic midges and some related insects with special reference to feeding habits
Ongoing monitoring of Tortugas Ecological Reserve: Assessing the consequences of reserve designation
Resumo:
Over the past five years, a biogeographic characterization of Tortugas Ecological Reserve(TER) has been carried out to measure the post-implementation effects of TER as a refuge for exploited species. Our results demonstrate that there is substantial microalgal biomass at depths between 10 and 30 m in the soft sediments at the coral reef interface, and that this community may play an important role in the food web supporting reef organisms. In addition, preliminary stable isotope data, in conjunction with prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be an important source of the primary production ultimately fueling fish production throughout TER. The majority of the fish analyzed so far have exhibited a C isotope signature consistent with a food web which relies heavily on benthic primary production. Fish counts indicate a marked increase in the abundance of large fish (>20 cm) within the Reserve relative to the Out and Park strata, across years. Faunal collections from open and protected soft bottom habitat near the northern boundary of Tortugas North strongly suggest that relaxation of trawling pressure has increased benthic biomass and diversity in this area of TER. These data, employing an integrated Before - After Control Impact (BACI) design at multiple spatial scales, will allow us to continue to document and quantify the post-implementation effects of TER. (PDF contains 58 pages)
Resumo:
Almost all extreme events lasting less than several weeks that significantly impact ecosystems are weather related. This review examines the response of estuarine systems to intense short-term perturbations caused by major weather events such as hurricanes. Current knowledge concerning these effects is limited to relatively few studies where hurricanes and storms impacted estuaries with established environmental monitoring programs. Freshwater inputs associated with these storms were found to initially result in increased primary productivity. When hydrographic conditions are favorable, bacterial consumption of organic matter produced by the phytoplankton blooms and deposited during the initial runoff event can contribute to significant oxygen deficits during subsequent warmer periods. Salinity stress and habitat destruction associated with freshwater inputs, as well as anoxia, adversely affect benthic populations and fish. In contrast, mobile invertebrate species such as shrimp, which have a short life cycle and the ability to migrate during the runoff event, initially benefit from the increased primary productivity and decreased abundance of fish predators. Events studied so far indicate that estuaries rebound in one to three years following major short-term perturbations. However, repeated storm events without sufficient recovery time may cause a fundamental shift in ecosystem structure (Scavia et al. 2002). This is a scenario consistent with the predicted increase in hurricanes for the east coast of the United States. More work on the response of individual species to these stresses is needed so management of commercial resources can be adjusted to allow sufficient recovery time for affected populations.
Resumo:
Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)