881 resultados para domestic pig
Resumo:
Irrigation with treated domestic sewage wastewater (TSE) is an agricultural practice to reduce water requirements of agroecossystems and the nutrient load impact on freshwaters, but adverse effects on soil chemical (salinization, sodification, etc.) and soil physical properties (alteration in soil porosity and hydraulic conductivity, etc.) have been reported. This study aimed to define some relationships among these changes in an Oxisol using multivariate analysis. Corn (Zea mays L.) and sunflower (Helianthus annuus L.) were grown for two years, irrigated with TSE. The following soil properties were determined: Ca2+; Mg2+; Na+; K+ and H + Al contents, cationic exchangeable capacity (CEC), sum of bases (SB), base saturation (V), texture (sand, silt and clay), macro-, micro-, and cryptoporosity (V MA, V MI and V CRI), water content at soil saturation (θS) and at field capacity (θFC), residual water content (θR), soil bulk density (d s), water dispersed clay (WDC) and saturated hydraulic conductivity (K SAT). Factor analysis revealed the following six principal factors: Fine Porosity (composed of Na+; K+; WDC, θR, θRFC, and V CRI); Large Porosity (θS, d s, V MA, Vs); Soil CEC (Ca2+; Mg2+; CEC, SB, V); Soil Acidity (H + Al); and Soil Texture (factors 5 and 6). A dual pore structure appears clearly to the factors 1 and 2, with an apparent relationship between fine porosity and the monovalent cations Na+ and K+. The irrigation (with potable sodic tap water or sewage wastewater) only had a significant effect on Fine Porosity and Large Porosity factors, while factors 3 and 4 (Soil CEC and Soil Acidity) were correlated with soil depth. The main conclusion was a shift in pore distribution (large to fine pores) during irrigation with TSE, which induces an increase of water storage and reduces the capacity of drainage of salts.
Resumo:
Systematic pig slurry application to crop soils may lead to the accumulation of heavy metals in regions with intensive pig raising. The aim of this study was to evaluate the accumulation of Cu, Zn and Mn in soils under systematic pig slurry application. For this purpose, soil samples were collected from two of the most representative watersheds of Santa Catarina where the predominant activity is pig raising. In each watershed, 12 properties were chosen to evaluate the different systems of pig husbandry (complete cycle (CC), farrowing (FaU) and finishing units (FiU)). Based on information of the producers, soil samples were collected in areas with and without systematic manure application. To determine the total Cu, Zn and Mn content in soils and manure, a methodology proposed by the Environmental Protection Agency of the United States (USEPA), method nº 3050B, was used. For the available heavy metal content, Cu and Zn was extracted with HCl 0.1 mol L-1 and Mn with KCl 1 mol L-1. Data were subjected to multivariate analysis, using the canonical discriminant analysis to identify the metals that best differentiate the soils studied within each swine housing system. Successive pig slurry applications cause an increase in Cu, Zn and Mn availability in the soil and this indicates the need for monitoring of the metal concentrations over time. The critical values of Cu in the soil can be reached and exceeded more rapidly than Zn. The results showed that the soil type may be one of the attribute underlying the determination of public policies in pig raising and waste management because soils such as Inceptisols were shown to be more prone to possible contamination since they may more rapidly reach total critical Cu levels.
Resumo:
Carriage of animal-associated methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) is common among pig farmers. This study was conducted (i) to investigate whether pig farmers are colonized with pig-specific S. aureus genotypes other than CC398 and (ii) to survey antimicrobial resistance of S. aureus isolates from pigs and pig farmers. Forty-eight S. aureus isolates from pig farmers and veterinarians and 130 isolates from pigs collected in Western Switzerland were genotyped by spa typing and amplified fragment length polymorphism (AFLP). Antimicrobial resistance profiles were determined for representative sample of the isolates. The data obtained earlier on healthy S. aureus carriers without exposure to agriculture were used for comparison. The genotype composition of S. aureus isolates from pig farmers and veterinarians was similar to isolates from pigs with predominant AFLP clusters CC398, CC9, and CC49. The resistance to tetracycline and macrolides (clarithromycin) was common among the isolates from farmers and veterinarians (52 and 21%, respectively) and similar to resistance levels in isolates from pigs (39 and 23%, respectively). This was in contrast to isolates from persons without contact with agriculture, where no (0/128) isolates were resistant to tetracycline and 3% of the isolates were resistant to clarithromycin. MRSA CC398 was isolated from pigs (n = 11) and pig farmers (n = 5). These data imply that zoonotic transmission of multidrug-resistant S. aureus from pigs to farmers is frequent, and well-known MRSA transmission merely represents the tip of the iceberg for this phenomenon. We speculate that the relatively low frequency of MRSA isolation is related to lower antimicrobial use in Switzerland compared to, for example, the Netherlands.
Resumo:
Pig slurry application as soil manure can alter the chemical properties of the soil and affect its acidity, modifying the environment for crop growth and development. The objective of this study was to evaluate the chemical properties related to soil acidity subjected to successive applications of pig slurry. The experiment was conducted in May 2000, in an experimental area of the Federal University of Santa Maria (UFSM) under no-tillage and lasted until January 2008. Nineteen surface applications of 0, 20, 40, and 80 m³ ha-1 of pig slurry were performed, during a period of 100 months and the soil sampled in the end (layers 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-50 and 50-60 cm). The application of pig slurry increased soil pH values, an effect that could reach the depth of 8 cm without affecting the potential acidity values. The applications also resulted in accumulation of Ca and Mg exchangeable levels in the surface layers, increasing base saturation and reducing Al saturation. Long-term applications induced an increase in organic matter in the deeper layers. However, the effect of this residue on the potential CEC was less significant and restricted to the surface layers.
Resumo:
The impact of pig slurry and poultry litter fertilization on soils depends on the conditions of use and the amounts applied. This study evaluated the effect of organic fertilizers after different application periods in different areas on the physical properties and organic carbon contents of a Rhodic Kandiudox, in Concordia, Santa Catarina, in Southern Brazil. The treatments consisted of different land uses and periods of pig and poultry litter fertilization: silage maize (M7 years), silage maize (M20 years), annual ryegrass pasture (P3 years), annual ryegrass pasture (P15 years), perennial pasture (PP20 years), yerba mate tea (Mt20 years), native forest (NF), and native pasture without manure application (P0). The 0-5, 5-10 and 10-20 cm soil layers were sampled and analyzed for total organic carbon, total nitrogen and soil physical properties such as density, porosity, aggregation, degree of flocculation, and penetration resistance. The organic carbon levels in the cultivated areas treated with organic fertilizer were even lower than in native forest soil. The organic fertilizers and studied management systems reduced the flocculation degree of the clay particles, and low macroporosity was observed in some areas. Despite these changes, a good soil physical structure was maintained, e.g., soil density and resistance to penetration were below the critical limits, whereas aggregate stability was high, which is important to reduce water erosion in these areas with rugged terrain in western Santa Catarina, used for pig and poultry farming.
Resumo:
Successive applications of pig litter to the soil surface can increase the phosphorus (P) content and alter its adsorption, promoting P transfer to surface or subsurface waters. The purpose of this study was to evaluate P accumulation and the pollution potential of a soil after application of pig litter. In March 2010, eight years after the installation of an experiment in Braço do Norte, Santa Catarina, SC, Brazil, on a Typic Hapludult, soil was sampled (layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20 and 20-30 cm) after the following fertilization treatments: no pig litter fertilization, pig slurry application and pig manure application. In this period, 694 and 1,890 kg P2O5 ha-1 were applied in the treatments with pig slurry and pig manure, respectively. The P content was determined, based on Mehlich-1, anion exchange resin (AER), 0.01 mol L-1 CaCl2 and total P in the samples. The adsorption isotherm parameters were also determined by the Langmuir and Koski-Vähälä & Hartikainem models in the layers 0-2.5 and 20-30 cm. The application of 1,890 kg P2O5 ha-1 in the form of pig manure led to P accumulation, as evidenced by Mehlich-1, down to a depth of 15 cm, by AER and 0.01 mol L-1 CaCl2 down to 20 cm and by total P to 30 cm. After application of 1,890 kg P2O5 ha-1 in the form of pig manure, the values of maximum P adsorption capacity were lowest in the deepest layer (20-30 cm), indicating the occupation of part of the adsorption sites of the particles. The application of swine manure to the soil over eight years increased the P quantity in the soil solution of the surface layer, indicating environmental contamination risk for surface and subsurface waters.
Resumo:
Selostus: Ekspanderkäsittelyn vaikutus vehnänleseen rehuarvoon lihasian ruokinnassa
Resumo:
Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.
Resumo:
Successive applications of pig slurry to soils under no-tillage can increase the nutrient levels in the uppermost soil layers and part of the nutrients may be transferred to deeper layers. The objective was to evaluate the distribution of nutrients in the profile of a soil after 19 pig slurry applications under no-tillage for 93 months. The experiment was conducted from May 2000 to January 2008 in an experimental area of the Federal University of Santa Maria, southern Brazil, on a Typic Hapludalf. The treatments consisted of pig slurry applications (0, 20, 40 and 80 m³ ha-1) and at the end of the experiment, soil samples were collected (layers 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-50 and 50-60 cm). The levels of mineral N, available P and K and total N, P and K were evaluated. The 19 pig slurry applications in 93 months promoted migration of total N and P down to 30 cm and available P and K to the deepest layer analyzed. At the end of the experiment, no increase was observed in mineral N content in the deeper layers, but increased levels of available P and K, showing a transfer of N, P and K to layers below the sampled. This evidences undesirable environmental and economic consequences of the use of pig slurry and reinforces the need for a more rational use, i.e., applications of lower manure doses, combined with mineral fertilizers.
Resumo:
Successive applications of pig slurry and pig deep litter may lead to an accumulation of copper (Cu) and zinc (Zn) fractions in the soil profile. The objective of this study was to evaluate the Cu and Zn forms and accumulation in a Sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. In March 2010, eight years after initiating an experiment in Braço do Norte, Santa Catarina (SC), Brazil, on a Sandy Typic Hapludalf soil, soil samples were collected from the 0-2.5, 2.5-5.0, 5-10 and 10-15 cm layers in treatments consisting of no manure application (control) and with applications of pig slurry and deep litter at two levels: the single and double rate of N requirement for maize and black oat succession. The soil was dried, ground in an agate mortar and analyzed for Cu and Zn contents by 0.01 mol L-1 EDTA and chemically fractionated to determine Cu and Zn. The applications of Pig deep litter and slurry at doses equivalent to 90 kg ha-1 N increased the contents of available Cu and Zn in the surface soil layer, if the double of this dose was applied in pig deep litter or double this dose in pig slurry, Cu and Zn migrated to a depth of 15 cm. Copper is accumulated mainly in the organic and residual fractions, and zinc preferentially in the fraction linked to clay minerals, especially in the surface soil layers.
Resumo:
Pig slurry (PS) represents an important nutrient source for plants and using it as fertilizer makes greater nutrient cycling in the environment possible. The aim of this study was to assess how PS application over a period of years can affect grain yield, dry matter production and nutrient accumulation in commercial grain and cover crops. The experiment was carried out in an experimental area of the Universidade Federal de Santa Maria, in Santa Maria, RS, Brazil, from May 2000 to January 2008. In this period, 19 grain and cover crops were grown with PS application before sowing, at rates of 0, 20, 40 and 80 m³ ha-1. The highest PS rate led to an increase in nutrient availability over the years, notably of P, but also of nutrients that are potentially toxic to plants, especially Cu and Zn. The apparent recovery of nutrients by commercial grain and cover crops decreased with the increasing number of PS applications to the soil. Accumulated dry matter production of the crops and maize grain yield were highest at an annual application rate of 80 m³ ha-1 PS. However, common bean yield increased up to 20 m³ ha-1 PS, showing that the crop to be grown should be considered to define the application rate.
Resumo:
Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control), 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox) soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity) and chemical properties (organic matter, pH, extractable P, and exchangeable K) were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.
Resumo:
The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox) and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fertilizer, organized in a randomized block design with four replications. The N contents were determined in the plant tissue and in the forms of total N and acid hydrolyzed fractions: ammonium-N, hexosamine-N, α-amino-N, amide-N, and unidentified-N. Annual application of pig slurry or mineral fertilizer increased the total-N content in the 0-10 cm depth layer. The main fractions of organic N in the soil were α-amino-N when pig slurry was applied and unidentified-N in the case of mineral fertilizers. Pig slurry increased the N fractions considered as labile: α-amino-N, ammonium-N, and amide-N. The increase in these labile organic N fractions in the soil through pig slurry application allows greater N uptake by the maize and oat crops in a no-tillage system.