976 resultados para distributed application
Resumo:
The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.
Resumo:
The Michigan Basin is located in the upper Midwest region of the United States and is centered geographically over the Lower Peninsula of Michigan. It is filled primarily with Paleozoic carbonates and clastics, overlying Precambrian basement rocks and covered by Pleistocene glacial drift. In Michigan, more than 46,000 wells have been drilled in the basin, many producing significant quantities of oil and gas since the 1920s in addition to providing a wealth of data for subsurface visualization. Well log tomography, formerly log-curve amplitude slicing, is a visualization method recently developed at Michigan Technological University to correlate subsurface data by utilizing the high vertical resolution of well log curves. The well log tomography method was first successfully applied to the Middle Devonian Traverse Group within the Michigan Basin using gamma ray log curves. The purpose of this study is to prepare a digital data set for the Middle Devonian Dundee and Rogers City Limestones, apply the well log tomography method to this data and from this application, interpret paleogeographic trends in the natural radioactivity. Both the Dundee and Rogers City intervals directly underlie the Traverse Group and combined are the most prolific reservoir within the Michigan Basin. Differences between this study and the Traverse Group include increased well control and “slicing” of a more uniform lithology. Gamma ray log curves for the Dundee and Rogers City Limestones were obtained from 295 vertical wells distributed over the Lower Peninsula of Michigan, converted to Log ASCII Standard files, and input into the well log tomography program. The “slicing” contour results indicate that during the formation of the Dundee and Rogers City intervals, carbonates and evaporites with low natural radioactive signatures on gamma ray logs were deposited. This contrasts the higher gamma ray amplitudes from siliciclastic deltas that cyclically entered the basin during Traverse Group deposition. Additionally, a subtle north-south, low natural radioactive trend in the center of the basin may correlate with previously published Dundee facies tracts. Prominent trends associated with the distribution of limestone and dolomite are not observed because the regional range of gamma ray values for both carbonates are equivalent in the Michigan Basin and additional log curves are needed to separate these lithologies.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
The objective of this report is to study distributed (decentralized) three phase optimal power flow (OPF) problem in unbalanced power distribution networks. A full three phase representation of the distribution networks is considered to account for the highly unbalance state of the distribution networks. All distribution network’s series/shunt components, and load types/combinations had been modeled on commercial version of General Algebraic Modeling System (GAMS), the high-level modeling system for mathematical programming and optimization. The OPF problem has been successfully implemented and solved in a centralized approach and distributed approach, where the objective is to minimize the active power losses in the entire system. The study was implemented on the IEEE-37 Node Test Feeder. A detailed discussion of all problem sides and aspects starting from the basics has been provided in this study. Full simulation results have been provided at the end of the report.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
Continuous advancements in technology have led to increasingly comprehensive and distributed product development processes while in pursuit of improved products at reduced costs. Information associated with these products is ever changing, and structured frameworks have become integral to managing such fluid information. Ontologies and the Semantic Web have emerged as key alternatives for capturing product knowledge in both a human-readable and computable manner. The primary and conclusive focus of this research is to characterize relationships formed within methodically developed distributed design knowledge frameworks to ultimately provide a pervasive real-time awareness in distributed design processes. Utilizing formal logics in the form of the Semantic Web’s OWL and SWRL, causal relationships are expressed to guide and facilitate knowledge acquisition as well as identify contradictions between knowledge in a knowledge base. To improve the efficiency during both the development and operational phases of these “intelligent” frameworks, a semantic relatedness algorithm is designed specifically to identify and rank underlying relationships within product development processes. After reviewing several semantic relatedness measures, three techniques, including a novel meronomic technique, are combined to create AIERO, the Algorithm for Identifying Engineering Relationships in Ontologies. In determining its applicability and accuracy, AIERO was applied to three separate, independently developed ontologies. The results indicate AIERO is capable of consistently returning relatedness values one would intuitively expect. To assess the effectiveness of AIERO in exposing underlying causal relationships across product development platforms, a case study involving the development of an industry-inspired printed circuit board (PCB) is presented. After instantiating the PCB knowledge base and developing an initial set of rules, FIDOE, the Framework for Intelligent Distributed Ontologies in Engineering, was employed to identify additional causal relationships through extensional relatedness measurements. In a conclusive PCB redesign, the resulting “intelligent” framework demonstrates its ability to pass values between instances, identify inconsistencies amongst instantiated knowledge, and identify conflicting values within product development frameworks. The results highlight how the introduced semantic methods can enhance the current knowledge acquisition, knowledge management, and knowledge validation capabilities of traditional knowledge bases.
Resumo:
Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.
Resumo:
We describe a system for performing SLA-driven management and orchestration of distributed infrastructures composed of services supporting mobile computing use cases. In particular, we focus on a Follow-Me Cloud scenario in which we consider mobile users accessing cloud-enable services. We combine a SLA-driven approach to infrastructure optimization, with forecast-based performance degradation preventive actions and pattern detection for supporting mobile cloud infrastructure management. We present our system's information model and architecture including the algorithmic support and the proposed scenarios for system evaluation.
Resumo:
The intention of an authentication and authorization infrastructure (AAI) is to simplify and unify access to different web resources. With a single login, a user can access web applications at multiple organizations. The Shibboleth authentication and authorization infrastructure is a standards-based, open source software package for web single sign-on (SSO) across or within organizational boundaries. It allows service providers to make fine-grained authorization decisions for individual access of protected online resources. The Shibboleth system is a widely used AAI, but only supports protection of browser-based web resources. We have implemented a Shibboleth AAI extension to protect web services using Simple Object Access Protocol (SOAP). Besides user authentication for browser-based web resources, this extension also provides user and machine authentication for web service-based resources. Although implemented for a Shibboleth AAI, the architecture can be easily adapted to other AAIs.
Resumo:
We investigate the problem of distributed sensors' failure detection in networks with a small number of defective sensors, whose measurements differ significantly from the neighbor measurements. We build on the sparse nature of the binary sensor failure signals to propose a novel distributed detection algorithm based on gossip mechanisms and on Group Testing (GT), where the latter has been used so far in centralized detection problems. The new distributed GT algorithm estimates the set of scattered defective sensors with a low complexity distance decoder from a small number of linearly independent binary messages exchanged by the sensors. We first consider networks with one defective sensor and determine the minimal number of linearly independent messages needed for its detection with high probability. We then extend our study to the multiple defective sensors detection by modifying appropriately the message exchange protocol and the decoding procedure. We show that, for small and medium sized networks, the number of messages required for successful detection is actually smaller than the minimal number computed theoretically. Finally, simulations demonstrate that the proposed method outperforms methods based on random walks in terms of both detection performance and convergence rate.
Resumo:
The Doctoral Workshop on Distributed Systems was held at Les Plans-sur-Bex, Switzerland, from June 26-28, 2013. Ph.D. students from the Universities of Neuchâtel and Bern as well as the University of Applied Sciences of Fribourg presented their current research work and discussed recent research results. This technical report includes the extended abstracts of the talks given during the workshop.
Resumo:
Web-scale knowledge retrieval can be enabled by distributed information retrieval, clustering Web clients to a large-scale computing infrastructure for knowledge discovery from Web documents. Based on this infrastructure, we propose to apply semiotic (i.e., sub-syntactical) and inductive (i.e., probabilistic) methods for inferring concept associations in human knowledge. These associations can be combined to form a fuzzy (i.e.,gradual) semantic net representing a map of the knowledge in the Web. Thus, we propose to provide interactive visualizations of these cognitive concept maps to end users, who can browse and search the Web in a human-oriented, visual, and associative interface.
Resumo:
In this work, we propose a distributed rate allocation algorithm that minimizes the average decoding delay for multimedia clients in inter-session network coding systems. We consider a scenario where the users are organized in a mesh network and each user requests the content of one of the available sources. We propose a novel distributed algorithm where network users determine the coding operations and the packet rates to be requested from the parent nodes, such that the decoding delay is minimized for all clients. A rate allocation problem is solved by every user, which seeks the rates that minimize the average decoding delay for its children and for itself. Since this optimization problem is a priori non-convex, we introduce the concept of equivalent packet flows, which permits to estimate the expected number of packets that every user needs to collect for decoding. We then decompose our original rate allocation problem into a set of convex subproblems, which are eventually combined to obtain an effective approximate solution to the delay minimization problem. The results demonstrate that the proposed scheme eliminates the bottlenecks and reduces the decoding delay experienced by users with limited bandwidth resources. We validate the performance of our distributed rate allocation algorithm in different video streaming scenarios using the NS-3 network simulator. We show that our system is able to take benefit of inter-session network coding for simultaneous delivery of video sessions in networks with path diversity.
Resumo:
Cloud Computing is an enabler for delivering large-scale, distributed enterprise applications with strict requirements in terms of performance. It is often the case that such applications have complex scaling and Service Level Agreement (SLA) management requirements. In this paper we present a simulation approach for validating and comparing SLA-aware scaling policies using the CloudSim simulator, using data from an actual Distributed Enterprise Information System (dEIS). We extend CloudSim with concurrent and multi-tenant task simulation capabilities. We then show how different scaling policies can be used for simulating multiple dEIS applications. We present multiple experiments depicting the impact of VM scaling on both datacenter energy consumption and dEIS performance indicators.
Resumo:
The Doctoral Workshop on Distributed Systems has been held at Kandersteg, Switzerland, from June 3-5, 2014. Ph.D. students from the Universities of Neuchâtel and Bern as well as the University of Applied Sciences of Fribourg presented their current research work and discussed recent research results. This technical report includes the extended abstracts of the talks given during the workshop.