213 resultados para dissolving


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single stage and two-stage sodium sulfite cooking were carried out on either spruce, pine or pure pine heartwood chips to investigate the influence of several process parameters on the initial phase of such a cook down to about 60 % pulp yield. The cooking experiments were carried out in the laboratory with either a lab-prepared or a mill-prepared cooking acid and the temperature and time were varied. The influences of dissolved organic and inorganic components in the cooking liquor on the final pulp composition and on the extent of side reactions were investigated. Kinetic equations were developed and the activation energies for delignification and carbohydrate dissolution were calculated using the Arrhenius equation. A better understanding of the delignification mechanisms during bisulfite and acid sulfite cooking was obtained by analyzing the lignin carbohydrate complexes (LCC) present in the pulp when different cooking conditions were used. It was found that using a mill-prepared cooking acid beneficial effect with respect to side reactions, extractives removal and higher stability in pH during the cook were observed compared to a lab-prepared cooking acid. However, no significant difference in degrees of delignification or carbohydrate degradation was seen.  The cellulose yield was not affected in the initial phase of the cook however; temperature had an influence on the rates of both delignification and hemicellulose removal. It was also found that the  corresponding activation energies increased in the order:  xylan, glucomannan, lignin and cellulose. The cooking temperature could thus be used to control the cook to a given carbohydrate composition in the final pulp. Lignin condensation reactions were observed during acid sulfite cooking, especially at higher temperatures. The LCC studies indicated the existence of covalent bonds between lignin and hemicellulose components with respect to xylan and glucomannan. LCC in native wood showed the presence of phenyl glycosides, ϒ-esters and α-ethers; whereas the α-ethers  were affected during sulfite pulping. The existence of covalent bonds between lignin and wood polysaccharides might be the rate-limiting factor in sulfite pulping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To compare soft-tissue dissolution by sodium hypochlorite, with an EDTA intermediate rinse, with or without activation with passive ultrasonic activation (PUI) or sonic activation using the Endoactivator (EA) or Eddy tips (ED). Methodology: The root canals of eighty-three human maxillary central incisors were chemo-mechanically prepared and the teeth split. A standardized longitudinal intracanal groove was created in one of the root halves. Eighty-three porcine palatal mucosa samples were collected, adapted to fit into the grooves and weighed. The re-assembled specimens were randomly divided into four experimental groups (n = 20), based on the final rinse: no activation; EA; PUI; ED, using 2.5% sodium hypochlorite, with an EDTA intermediate rinse. A control group (n = 3) was irrigated with distilled water without activation. The solutions were delivered using a syringe and needle 2 mm from working length. Total irrigation time was 150 s, including 60 s of activation in the specific groups. The study was carried out at 36 ± 2 °C. The porcine palatal mucosa samples were weighed after completion of the assays. Student paired t-test and anova were used to assess the intra- and intergroup weight changes. The multiple comparisons were evaluated using Bonferroni correction (α = 0.05). Results: Weight loss occurred in all experimental groups. Irrigant activation resulted in greater weight loss when compared to the nonactivated group [vs. EA (P = 0.001); vs. PUI (P < 0.001); vs. ED (P < 0.001)]. No significant differences were found amongst the different activation systems. Conclusions: Activation increased the tissue-dissolving activity of irrigants from artificial grooves in root canals of maxillary central incisors. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-replication and compartmentalization are two central properties thought to be essential for minimal life, and understanding how such processes interact in the emergence of complex reaction networks is crucial to exploring the development of complexity in chemistry and biology. Autocatalysis can emerge from multiple different mechanisms such as formation of an initiator, template self-replication and physical autocatalysis (where micelles formed from the reaction product solubilize the reactants, leading to higher local concentrations and therefore higher rates). Amphiphiles are also used in artificial life studies to create protocell models such as micelles, vesicles and oil-in-water droplets, and can increase reaction rates by encapsulation of reactants. So far, no template self-replicator exists which is capable of compartmentalization, or transferring this molecular scale phenomenon to micro or macro-scale assemblies. Here a system is demonstrated where an amphiphilic imine catalyses its own formation by joining a non-polar alkyl tail group with a polar carboxylic acid head group to form a template, which was shown to form reverse micelles by Dynamic Light Scattering (DLS). The kinetics of this system were investigated by 1H NMR spectroscopy, showing clearly that a template self-replication mechanism operates, though there was no evidence that the reverse micelles participated in physical autocatalysis. Active oil droplets, composed from a mixture of insoluble organic compounds in an aqueous sub-phase, can undergo processes such as division, self-propulsion and chemotaxis, and are studied as models for minimal cells, or protocells. Although in most cases the Marangoni effect is responsible for the forces on the droplet, the behaviour of the droplet depends heavily on the exact composition. Though theoretical models are able to calculate the forces on a droplet, to model a mixture of oils on an aqueous surface where compounds from the oil phase are dissolving and diffusing through the aqueous phase is beyond current computational capability. The behaviour of a droplet in an aqueous phase can only be discovered through experiment, though it is determined by the droplet's composition. By using an evolutionary algorithm and a liquid handling robot to conduct droplet experiments and decide which compositions to test next, entirely autonomously, the composition of the droplet becomes a chemical genome capable of evolution. The selection is carried out according to a fitness function, which ranks the formulation based on how well it conforms to the chosen fitness criteria (e.g. movement or division). Over successive generations, significant increases in fitness are achieved, and this increase is higher with more components (i.e. greater complexity). Other chemical processes such as chemiluminescence and gelation were investigated in active oil droplets, demonstrating the possibility of controlling chemical reactions by selective droplet fusion. Potential future applications for this might include combinatorial chemistry, or additional fitness goals for the genetic algorithm. Combining the self-replication and the droplet protocells research, it was demonstrated that the presence of the amphiphilic replicator lowers the interfacial tension between droplets of a reaction mixture in organic solution and the alkaline aqueous phase, causing them to divide. Periodic sampling by a liquid handling robot revealed that the extent of droplet fission increased as the reaction progressed, producing more individual protocells with increased self-replication. This demonstrates coupling of the molecular scale phenomenon of template self-replication to a macroscale physicochemical effect.