972 resultados para dislocation scattering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general theory of fracture criteria for mixed dislocation emission and cleavage processes is developed based on Ohr's model. Complicated cases involving mixed-mode loading are considered. Explicit formulae are proposed for the critical condition of crack cleavage propagation after a number of dislocation emissions. The effects of crystal orientation, crack geometry and load phase angle on the apparent critical energy release rates and the total number of the emitted dislocations at the initiation of cleavage are analysed in detail. In order to evaluate the effects of nonlinear interaction between the slip displacement and the normal separation, an analysis of fracture criteria for combined dislocation emission and cleavage is presented on the basis of the Peierls framework. The calculation clearly shows that the nonlinear theory gives slightly high values of the critical apparent energy release rate G(c) for the same load phase angle. The total number N of the emitted dislocations at the onset of cleavage given by nonlinear theory is larger than that of linear theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a dislocation array emitted from a crack tip under mode II loading with asymmetric tilt grain boundaries (GBs) is analysed by the molecular dynamics method. The GBs can generally be described by planar and linear matching zones and unmatching zones. All GBs are observed to emit dislocations. The GBs migrated easily due to their planar and linear matching structure and asymmetrical type. The diffusion induced by stress concentration is found to promote the GB migration. The transmissions of dislocations are either along the matched plane or along another plane depending on tilt angle theta. Alternate processes of stress concentration and stress relaxation take place ahead of the pileup. The stress concentration can be released either by transmission of dislocations, by atom diffusion along GBs, or by migration of GBs by formation of twinning bands. The simulated results also unequivocally demonstrate two processes, i.e. asymmetrical GBs evolving into symmetrical ones and unmatching zones evolving into matching ones during the loading process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gliding behavior of edge dislocation near a grain boundary(QB) in copper under pure shear stresses is simulated by using molecular dynamics(MD) method. Many-body potential incorporating the embedded atom method (EAM) is used. The critical shear stresses for a single disocation to pass across GB surface are obtained at values of sigma(c)=23MPa similar to 68 MPa and 137 MPa similar to 274 MPa for Sigma=165 small angle tilt GB at 300 K and 20 K, respectively. The first result agrees with the experimental yield stress sigma(y)(=42 MPa) quite well. It suggests that there might be one of the reasons of initial plastic yielding caused by single dislocation gliding across GB. In addition, there might be possibility to obtain yield strength from microscopic analysis. Moreover, the experimental value of sigma(y) at low temperature is generally higher than that at room temperature. So, these results are in conformity qualitatively with experimental fact. On the other hand, the Sigma=25 GB is too strong an obstacle to the dislocation. In this case, a dislocation is able to pass across GB under relatively low stress only when it is driven by other dislocations. This is taken to mean that dislocation pile-up must be built up in front of this kind of GB, if this GB may take effect on the process of plastic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems of dislocation nucleation and emission from a crack tip are analysed based on Peierls model. The concept adopted here is essentially the same as that proposed by Rice. A slight modification is introduced here to identify the pure linear elastic response of material. A set of new governing equations is developed, which is different from that used by Beltz and Rice. The stress field and the dislocation density field can be expressed as the first and second Chebyshev polynomial series respectively. Then the opening and slip displacements can be expanded as the trigonometric series. The Newton-Raphson Method is used to solve a set of nonlinear algebraic equations. The new governing equations allow us to extend the analyses to the case of dislocation emission. The calculation results for pure shearing, pure tension and combined tension and shear loading are given in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of thermal activation on the dislocation emission from an atomistic crack tip are discussed, Molecular dynamics simulations at different constant temperatures are carried out to investigate the thermal effects. The simulated results show that the processes of the partial dislocation generation and emission are temperature dependent. As the temperature increases, the incipient duration of the partial dislocation nucleation becomes longer, the critical stress intensity factor for partial dislocation emission is reduced and, at the same loading level, more dislocations are emitted. The dislocation velocity moving away from the crack tip and the separations of partial dislocations are apparently not temperature dependent. The simulated results also show that, as the temperature increases, the stress distribution along the crack increases slightly. Therefore stress softening at the crack tip induced by thermal activation does not exist in the present simulation. A simple model is proposed to evaluate the relation of the critical stress intensity factor versus temperature. The obtained relation is in good agreement with our molecular dynamics results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative Kic values of metals are calculated with a simplified dislocation model. It is found that the ratio of KIIc to KIc and the temperature dependence of fracture toughness of some metals estimated with this model are consistent with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNS of spatiotemporal evolution of a wake-type flow is performed. In the incoming flow, a local spanwise nonuniformity in momentum defect is initially imposed. Results show that the spanwise nonuniformity leads to a series of symmetric twist vortex dislocation in downstream of the flow. Vortex line variations and substantial transition of vorticity from spanwise to the streamwise and vertical directions clearly feature the generation of a vortex dislocation and the real vortex linking in the dislocation. Dynamical process and the mechanism responsible for the vortex dislocation are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented here to analyse the Peierls-Nabarro model of an edge dislocation in a rectangular plate. The analysis is based on the superposition scheme and series expansions of complex potentials. The stress field and dislocation density field on the slip plane can be expressed as the first and the second Chebyshev polynomial series respectively. Two sets of governing equations are obtained on the slip plane and outer boundary of the rectangular plate respectively. Three numerical methods are used to solve the governing equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文研究粘弹性材料界面裂纹对冲击载荷的瞬态响应和对广义平面波的稳态散射。相对于已有广泛研究的弹性材料裂纹瞬态响应和稳态散射问题,本文的研究有三个突出特点:1)粘弹性材料;2)界面裂纹;3)广义平面波入射。粘弹性材料界面裂纹对冲击载荷的瞬态响应和对广义平面波的散射尚无开展研究,本文在弹性材料相应问题的研究基础上,首先开展了这一问题的研究。对于冲击载荷下粘弹性界面裂纹的瞬态响应问题,利用Laplace积分变换方法,将粘弹性材料卷积型本构方程转化为Laplace变换域内的代数型本构方程,从而可以在Laplace变换域内象处理弹性材料的冲击响应一样,将相应的混合边值问题归结为关于裂纹张开位移COD的对偶积分方程,并进一步引入裂纹位错密度函数CDD (Crack Dislocation Density),将对偶积分方程化成关于CDD的奇异积分方程(SIE)。用数值方法求解奇异积分方程得到变换域内的动应力强度因子数值解,最后利用Laplace积分逆变换数值方法得到时间域内的动应力强度因子的时间响应。理论分析考虑了两种裂纹模型,即Griffith界面裂纹和柱面圆弧型界面裂纹。考虑的载荷包括反平面冲击载荷和平面冲击载荷。对于平面冲击载荷,通过对裂尖应力场的奇性分析,首次发现粘弹性界面裂纹裂尖动应力场奇性指数不是常数0.5,而是与震荡指数一样依赖材料参数。针对反平面冲击载荷给出了一个算例,计算了裂尖动应力强度因子的时间响应,并与弹性材料的结果作了比较,发现粘弹性效应的影响不仅使过冲击峰值降低,而且使峰值点后移。粘性效应较大时,过冲击现象甚至不出现。关于粘弹性界面裂纹对广东省义平面波的散射问题,首先研究广义平面波在无裂纹存在的理想界面的反射和透射,再研究由于界面裂纹的存在而产生的附加散射场。利用粘弹性材料的复模量理论,可将粘弹性材料的卷积型相构方程化成频率域内的代数型本构方程。类似弹性平面波的处理,在频率域内将问题最终归结为关于裂纹位错密度CDD的奇异积分方程。数值方法求解奇异积分方程即可得到频率域内的散射场,并进而得到裂尖动应力强度因子和远场位移型函数和散射截面。理论分析考虑了两种裂纹模型:Griffith界面裂纹和柱面圆弧型界面裂纹。研究的入射波有广义的SH波和P波。对于广义平面P波入射的情况,通过对裂尖应力场的奇性分析,同样发现粘弹性界面裂纹裂尖动应力场奇性指数不地常数0.5,而是与震荡指数一样依赖于材料参数。对柱面裂纹散射远场的渐近分析,发现远场位移和应力除含有几何衰减因子外,都含有一个材料衰减速因子。散射截面由于材料衰减因子的存在也成为依赖散射半径的量。为了使散射截面仍有意义,文中提出一种修正办法。对Griffith界面裂纹,给出了一个广义平面SH波入射的算例;对柱面界面裂纹,给出了一个广义平面P波入射的算例。计算了不同入射角和入射频率下裂纹的张开位移和动就应力强度因子,并分析了其依赖关系。求解奇异积分方程的数值方法和Laplace积分逆变换数值方法是本文的基本数值方法。本文对这两种方法作了大量的调研和系统的研究。在对比分析的基础上,对现有的各种方法从原理,适用范围,计数效率,优势及特点进行了归纳总结。并尝试了奇异积分方程的最新数值方法--分片连续函数法,证实了其适用性和方便性.