899 resultados para digital signal processor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Median filtering is a simple digital non—linear signal smoothing operation in which median of the samples in a sliding window replaces the sample at the middle of the window. The resulting filtered sequence tends to follow polynomial trends in the original sample sequence. Median filter preserves signal edges while filtering out impulses. Due to this property, median filtering is finding applications in many areas of image and speech processing. Though median filtering is simple to realise digitally, its properties are not easily analysed with standard analysis techniques,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA sequence representation methods are used to denote a gene structure effectively and help in similarities/dissimilarities analysis of coding sequences. Many different kinds of representations have been proposed in the literature. They can be broadly classified into Numerical, Graphical, Geometrical and Hybrid representation methods. DNA structure and function analysis are made easy with graphical and geometrical representation methods since it gives visual representation of a DNA structure. In numerical method, numerical values are assigned to a sequence and digital signal processing methods are used to analyze the sequence. Hybrid approaches are also reported in the literature to analyze DNA sequences. This paper reviews the latest developments in DNA Sequence representation methods. We also present a taxonomy of various methods. A comparison of these methods where ever possible is also done

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper compares the most common digital signal processing methods of exon prediction in eukaryotes, and also proposes a technique for noise suppression in exon prediction. The specimen used here which has relevance in medical research, has been taken from the public genomic database - GenBank.Here exon prediction has been done using the digital signal processing methods viz. binary method, EIIP (electron-ion interaction psuedopotential) method and filter methods. Under filter method two filter designs, and two approaches using these two designs have been tried. The discrete wavelet transform has been used for de-noising of the exon plots.Results of exon prediction based on the methods mentioned above, which give values closest to the ones found in the NCBI database are given here. The exon plot de-noised using discrete wavelet transform is also given.Alterations to the proven methods as done by the authors, improves performance of exon prediction algorithms. Also it has been proven that the discrete wavelet transform is an effective tool for de-noising which can be used with exon prediction algorithms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transreal numbers are a total number system in which even, arithmetical operation is well defined even-where. This has many benefits over the real numbers as a basis for computation and, possibly, for physical theories. We define the topology of the transreal numbers and show that it gives a more coherent interpretation of two's complement arithmetic than the conventional integer model. Trans-two's-complement arithmetic handles the infinities and 0/0 more coherently, and with very much less circuitry, than floating-point arithmetic. This reduction in circuitry is especially beneficial in parallel computers, such as the Perspex machine, and the increase in functionality makes Digital Signal Processing chips better suited to general computation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tremor is a clinical feature characterized by oscillations of a part of the body. The detection and study of tremor is an important step in investigations seeking to explain underlying control strategies of the central nervous system under natural (or physiological) and pathological conditions. It is well established that tremorous activity is composed of deterministic and stochastic components. For this reason, the use of digital signal processing techniques (DSP) which take into account the nonlinearity and nonstationarity of such signals may bring new information into the signal analysis which is often obscured by traditional linear techniques (e.g. Fourier analysis). In this context, this paper introduces the application of the empirical mode decomposition (EMD) and Hilbert spectrum (HS), which are relatively new DSP techniques for the analysis of nonlinear and nonstationary time-series, for the study of tremor. Our results, obtained from the analysis of experimental signals collected from 31 patients with different neurological conditions, showed that the EMD could automatically decompose acquired signals into basic components, called intrinsic mode functions (IMFs), representing tremorous and voluntary activity. The identification of a physical meaning for IMFs in the context of tremor analysis suggests an alternative and new way of detecting tremorous activity. These results may be relevant for those applications requiring automatic detection of tremor. Furthermore, the energy of IMFs was visualized as a function of time and frequency by means of the HS. This analysis showed that the variation of energy of tremorous and voluntary activity could be distinguished and characterized on the HS. Such results may be relevant for those applications aiming to identify neurological disorders. In general, both the HS and EMD demonstrated to be very useful to perform objective analysis of any kind of tremor and can therefore be potentially used to perform functional assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The next generation consumer level interactive services require reliable and constant communication for both mobile and static users. The Digital Video Broadcasting ( DVB) group has exploited the rapidly increasing satellite technology for the provision of interactive services and launched a standard called Digital Video Broadcast through Return Channel Satellite (DYB-RCS). DVB-RCS relies on DVB-Satellite (DVB-S) for the provision of forward channel. The Digital Signal processing (DSP) implemented in the satellite channel adapter block of these standards use powerful channel coding and modulation techniques. The investigation is concentrated towards the Forward Error Correction (FEC) of the satellite channel adapter block, which will help in determining, how the technology copes with the varying channel conditions and user requirements(1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many techniques are currently used for motion estimation. In the block-based approaches the most common procedure applied is the block-matching based on various algorithms. To refine the motion estimates resulting from the full search or any coarse search algorithm, one can find few applications of Kalman filtering, mainly in the intraframe scheme. The Kalman filtering technique applicability for block-based motion estimation is rather limited due to discontinuities in the dynamic behaviour of the motion vectors. Therefore, we propose an application of the concept of the filtering by approximated densities (FAD). The FAD, originally introduced to alleviate limitations due to conventional Kalman modelling, is applied to interframe block-motion estimation. This application uses a simple form of FAD involving statistical characteristics of multi-modal distributions up to second order.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emergency vehicles use high-amplitude sirens to warn pedestrians and other road users of their presence. Unfortunately, the siren noise enters the vehicle and corrupts the intelligibility of two-way radio voice com-munications from the emergency vehicle to a control room. Often the siren has to be turned off to enable the control room to hear what is being said which subsequently endangers people's lives. A digital signal processing (DSP) based system for the cancellation of siren noise embedded within speech is presented. The system has been tested with the least mean square (LMS), normalised least mean square (NLMS) and affine projection algorithm (APA) using recordings from three common types of sirens (two-tone, wail and yelp) from actual test vehicles. It was found that the APA with a projection order of 2 gives comparably improved cancellation over the LMS and NLMS with only a moderate increase in algorithm complexity and code size. Therefore, this siren noise cancellation system using the APA offers an improvement in cancellation achieved by previous systems. The removal of the siren noise improves the response time for the emergency vehicle and thus the system can contribute to saving lives. The system also allows voice communication to take place even when the siren is on and as such the vehicle offers less risk of danger when moving at high speeds in heavy traffic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Under multipath conditions, standard Video Intermediate Frequency (VIF) detectors generate a local oscillator phase error and consequently produce a dispersed non-ideal detected video signal due to the presence of additional IF carriers. The dispersed video causes problems when attempting to identify and remove the multipath interference, or ghosts, by the use of Digital Signal Processing and digital filtering. A digital phase lock system is presented which derives the correct phase for synchronous detection in the presence of multipath by using correlation information that has already been calculated as part of the deghosting process. As a result, the video deghoster system is made simpler, faster and more economical.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we introduce a new Wiener system modeling approach for memory high power amplifiers in communication systems using observational input/output data. By assuming that the nonlinearity in the Wiener model is mainly dependent on the input signal amplitude, the complex valued nonlinear static function is represented by two real valued B-spline curves, one for the amplitude distortion and another for the phase shift, respectively. The Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first order derivatives recursion. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter considers the Multiband Orthogonal Frequency Division Multiplexing (MB- OFDM) modulation and demodulation with the intention to optimize the Ultra-Wideband (UWB) system performance. OFDM is a type of multicarrier modulation and becomes the most important aspect for the MB-OFDM system performance. It is also a low cost digital signal component efficiently using Fast Fourier Transform (FFT) algorithm to implement the multicarrier orthogonality. Within the MB-OFDM approach, the OFDM modulation is employed in each 528 MHz wide band to transmit the data across the different bands while also using the frequency hopping technique across different bands. Each parallel bit stream can be mapped onto one of the OFDM subcarriers. Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for MB-OFDM in the ECMA-368 defined UWB radio platform. A dual QPSK soft-demapper is suitable for ECMA-368 that exploits the inherent Time-Domain Spreading (TDS) and guard symbol subcarrier diversity to improve the receiver performance, yet merges decoding operations together to minimize hardware and power requirements. There are several methods to demap the DCM, which are soft bit demapping, Maximum Likelihood (ML) soft bit demapping, and Log Likelihood Ratio (LLR) demapping. The Channel State Information (CSI) aided scheme coupled with the band hopping information is used as a further technique to improve the DCM demapping performance. ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. An alternative high data rate modulation scheme termed Dual Circular 32-QAM that fits within the configuration of the current standard increasing system throughput thus maintaining the high rate throughput even with a moderate level of dropped packets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces the Hilbert Analysis (HA), which is a novel digital signal processing technique, for the investigation of tremor. The HA is formed by two complementary tools, i.e. the Empirical Mode Decomposition (EMD) and the Hilbert Spectrum (HS). In this work we show that the EMD can automatically detect and isolate tremulous and voluntary movements from experimental signals collected from 31 patients with different conditions. Our results also suggest that the tremor may be described by a new class of mathematical functions defined in the HA framework. In a further study, the HS was employed for visualization of the energy activities of signals. This tool introduces the concept of instantaneous frequency in the field of tremor. In addition, it could provide, in a time-frequency-energy plot, a clear visualization of local activities of tremor energy over the time. The HA demonstrated to be very useful to perform objective measurements of any kind of tremor and can therefore be used to perform functional assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces the Hilbert Analysis (HA), which is a novel digital signal processing technique, for the investigation of tremor. The HA is formed by two complementary tools, i.e. the Empirical Mode Decomposition (EMD) and the Hilbert Spectrum (HS). In this work we show that the EMD can automatically detect and isolate tremulous and voluntary movements from experimental signals collected from 31 patients with different conditions. Our results also suggest that the tremor may be described by a new class of mathematical functions defined in the HA framework. In a further study, the HS was employed for visualization of the energy activities of signals. This tool introduces the concept of instantaneous frequency in the field of tremor. In addition, it could provide, in a time-frequency energy plot, a clear visualization of local activities of tremor energy over the time. The HA demonstrated to be very useful to perform objective measurements of any kind of tremor and can therefore be used to perform functional assessment.