975 resultados para delta 15N, organic matter
Resumo:
Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 µm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher similarity of both sample types in the deep sediment. In summary, Soxhlet extraction of sediments accessed a larger and more complex pool of organic matter than present in interstitial water DOM.
Resumo:
Relative to the past 2,000 years, the Arctic region has warmed significantly over the past few decades. However, the evolution of Arctic temperatures during the rest of the Holocene is less clear. Proxy reconstructions, suggest a long-term cooling trend throughout the mid- to late Holocene, whereas climate model simulations show only minor changes or even warming. Here we present a record of the oxygen isotope composition of permafrost ice wedges from the Lena River Delta in the Siberian Arctic. The isotope values, which reflect winter season temperatures, became progressively more enriched over the past 7,000 years, reaching unprecedented levels in the past five decades. This warming trend during the mid- to late Holocene is in opposition to the cooling seen in other proxy records. However, most of these existing proxy records are biased towards summer temperatures. We argue that the opposing trends are related to the seasonally different orbital forcing over this interval. Furthermore, our reconstructed trend as well as the recent maximum are consistent with the greenhouse gas forcing and climate model simulations, thus reconciling differing estimates of Arctic and northern high-latitude temperature evolution during the Holocene.
Resumo:
Oceanic nutrient cycling in the Southern Ocean is supposed to have an important impact on glacial-interglacial atmospheric CO2 changes and global climate. In order to characterize such nutrient cycling over the last two climatic cycles we investigated carbon and nitrogen isotopic ratios of diatom-bound organic matter (d13Cdiat and d15Ndiat, respectively) in two cores retrieved form the Atlantic and Indian sectors of the Antarctic Ocean. The two cores show the same isotopic patterns. The d13Cdiat values are depleted during glacial periods and enriched during interglacial periods, indicating lower productivity during cold times. The d15Ndiat values are enriched during glacial periods and depleted during interglacial periods, arguing for greater nitrate utilization during cold times. Taken at face value, this apparent contradiction leads to opposite conclusions on the role of the Southern Ocean biological pump on the atmospheric CO2 changes. However, the two sets of data can be reconciled by a "sea ice plus mixing rate scenario" that calls upon a balance between the effect of cutting off gas transfer at the ocean-atmosphere boundary and the effect of reducing vertical transport of nutrients through the pycnocline.
Resumo:
The temporal variability of delta(13)C in suspended particulate organic matter (POM) and oyster Crassostrea gigas along a salinity gradient was investigated from May 1992 to September 1993 within the estuarine bay of Marennes-Oleron (France). During this period the mean daily discharge of the Charente River exhibited large seasonal variation, with a high discharge from November 1992 to January 1993. Contrary to that at the river mouth and the marine littoral, delta(13)C in POM and in oysters at mid-estuary was affected by the high flood period. The delta(13)C values of POM decreased in mid-estuary and remained at low levels during the high discharge period, indicating an increasing contribution of terrestrial inputs to the estuarine POM pool. At the same site, a remarkable decrease of delta(13)C in oysters occurred between December 1992 and March 1993 (after a time lag compared to the ambient POM), indicating incorporation of terrestrial organic matter in oyster tissues during the high flood discharge. The lag between the delta(13)C decrease in POM and oysters is attributed to the time needed for oyster tissues to incorporate enough newly terrestrial light carbon to be recognized by the delta(13)C measure (about 1 to 2 mo). This time interval depends on tissue turnover time. The delta(13)C POM decrease (i.e. 1.3 parts per thousand) cannot explain entirely the decrease observed in oysters (i.e. 2.3 parts per thousand). In fact, the pattern exhibited by mid-estuarine oysters can be explained by the increasing contribution of terrestrial organic matter to their feeding, and the inability to preferentially utilize specific components of the estuarine POM that are C-13-enriched.
Resumo:
Seasonal studies were carried out from 21 stations, comprising of three zones, of Cochin Estuary, to assess the organic matter quality and trophic status. The hydographical parameters showed significant seasonal variations and nutrients and chlorophylls were generally higher during the monsoon season. However, chemical contamination along with the seasonal limitations of light and nitrogen imposed restrictions on the primary production and as a result, mesotrophic conditions generally prevailed in the water column. The nutrient stoichometries and delta C-13 values of surficial sediments indicated significant allochthonous contribution of organic matter. Irrespective of the higher content of total organic matter, the labile organic matter was very low. Dominance of carbohydrates over lipids and proteins indicated the lower nutritive aspect of the organic matter, and their aged and refractory nature. This, along with higher amount of phytodetritus and the low algal contribution to the biopolymeric carbon corroborated the dominance of allochthonous organic matter and the heterotrophic nature. The spatial and seasonal variations of labile organic components could effectively substantiate the observed shift in the productivity pattern. An alternative ratio, lipids to tannins and lignins, was proposed to ascertain the relative contribution of allochthonous organic matter in the estuary. This study confirmed the efficiency of an integrated biogeochemical approach to establish zones with distinct benthic trophic status associated with different degrees of natural and anthropogenic input. Nevertheless, our results also suggest that the biochemical composition alone could lead to erroneous conclusions in the case of regions that receive enormous amounts of anthropogenic inputs.
Resumo:
Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Temporal and spatial changes in delta(13) C and delta 15 N of particulate organic matter (POM) and Hemiculter leucisculus were studied in the Yangtze River of China. Isotopic signatures of POM showed seasonal variations, which was assumed to be associated with allochthonous organic input and autochthonous phytoplankton growth. delta C-13 of H. leucisculus was 1.1 % higher than that of POM, which suggested that the food source of H. leucisculus was mostly from the POM. A mass balance model indicated the trophic position of H. leucisculus in the food web of Yangtze River was estimated to be 2.0 - 2.1, indicating that this fish mainly feeds on planktonic organic matter, which agreed with previous gut content analysis.
Resumo:
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0-2 cm) were 5-10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C-26-C-33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC(15) to nC(22) compounds. Long-chain (> C-20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (< C-20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk delta(CTOCTOC)-C-13. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.
Resumo:
High molecular weight dissolved organic matter (HMW-DOM) represents an important component of dissolved organic carbon (DOC) in seawater and fresh-waters. In this paper, we report measurements of stable carbon (delta(13)C) isotopic compositions in total lipid, total hydrolyzable amino acid (THAA), total carbohydrate (TCHO) and acid-insoluble "uncharacterized" organic fractions separated from fourteen HMW-DOM samples collected from four U.S. estuaries. In addition, C/N ratio, delta(13) C and stable nitrogen (delta(15)N) isotopic compositions were also measured for the bulk HMW-DOM samples. Our results indicate that TCHO and THAA are the dominant organic compound classes, contributing 33-46% and 13-20% of the organic carbon in HMW-DOM while total lipid accounts for only <2% of the organic carbon in the samples. In all samples. a significant fraction (35-49%) of HMW-DOM was included in the acid-insoluble fraction. Distinct differences in isotopic compositions exist among bulk samples, the compound classes and the acid-insoluble fractions. Values of delta(13)C and delta(15)N measured for bulk HMW-DOM varied from -22.1 to -30.1parts per thousand and 2.8 to 8.9parts per thousand, respectively and varied among the four estuaries studied as well. Among the Compound classes, TCHO was more enriched in C-13 (delta(13)C = -18.5 to -22.8parts per thousand) compared with THAA (delta(13)C = -20.0 to -29.6parts per thousand) and total lipid (delta(13)C = -25.7 to -30.7parts per thousand). The acid-insoluble organic fractions, in general, had depleted C-13 values (delta(13)C = -23.0 to -34.4parts per thousand). Our results indicate that the observed differences in both delta(13)C and delta(15)N were mainly due to the differences in sources of organic matter and nitrogen inputs to these estuaries in addition to the microbial processes responsible for isotopic fractionation among the compound classes. Both terrestrial sources and local sewage inputs contribute significantly to the HMW-DOM pool in the estuaries studied and thus had a strong influence on its isotopic signatures. Copyright (C) 2004 Elsevier Ltd.
Resumo:
Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.