845 resultados para declarative, procedural, and reflective (DPR) model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The INtegrated CAtchment (INCA) model has been developed to simulate the impact of mine discharges on river systems. The model accounts for the key kinetic chemical processes operating as well as the dilution, mixing and redistribution of pollutants in rivers downstream of mine discharges or acid rock drainage sites. The model is dynamic and simulates the day-to-day behaviour of hydrology and eight metals (cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium) as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, sub-catchment and in-stream river behaviour. The model has been applied to the Roia Montan Mine in Transylvania, Romania, and used to assess the impacts of old mine adits on the local catchments as well as on the downstream Aries and Mures river system. The question of mine restoration is investigated and a set of clean-up scenarios investigated. It is shown that the planned restoration will generate a much improved water quality from the mine and also alleviate the metal pollution of the river system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more complete understanding of amino acid ( AA) metabolism by the various tissues of the body is required to improve upon current systems for predicting the use of absorbed AA. The objective of this work was to construct and parameterize a model of net removal of AA by the portal-drained viscera (PDV). Six cows were prepared with arterial, portal, and hepatic catheters and infused abomasally with 0, 200, 400, or 600 g of casein daily. Casein infusion increased milk yield quadratically and tended to increase milk protein yield quadratically. Arterial concentrations of a number of essential AA increased linearly with respect to infusion amount. When infused casein was assumed to have a true digestion coefficient of 0.95, the minimum likely true digestion coefficient for noninfused duodenal protein was found to be 0.80. Net PDV use of AA appeared to be linearly related to total supply (arterial plus absorption), and extraction percentages ranged from 0.5 to 7.25% for essential AA. Prediction errors for portal vein AA concentrations ranged from 4 to 9% of the observed mean concentrations. Removal of AA by PDV represented approximately 33% of total postabsorptive catabolic use, including use during absorption but excluding use for milk protein synthesis, and was apparently adequate to support endogenous N losses in feces of 18.4 g/d. As 69% of this use was from arterial blood, increased PDV catabolism of AA in part represents increased absorption of AA in excess of amounts required by other body tissues. Based on the present model, increased anabolic use of AA in the mammary and other tissues would reduce the catabolic use of AA by the PDV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past decade, a number of mechanistic, dynamic simulation models of several components of the dairy production system have become available. However their use has been limited due to the detailed technical knowledge and special software required to run them, and the lack of compatibility between models in predicting various metabolic processes in the animal. The first objective of the current study was to integrate the dynamic models of [Brit. J. Nutr. 72 (1994) 679] on rumen function, [J. Anim. Sci. 79 (2001) 1584] on methane production, [J. Anim. Sci. 80 (2002) 2481 on N partition, and a new model of P partition. The second objective was to construct a decision support system to analyse nutrient partition between animal and environment. The integrated model combines key environmental pollutants such as N, P and methane within a nutrient-based feed evaluation system. The model was run under different scenarios and the sensitivity of various parameters analysed. A comparison of predictions from the integrated model with the original simulation models showed an improvement in N excretion since the integrated model uses the dynamic model of [Brit. J. Nutr. 72 (1994) 6791 to predict microbial N, which was not represented in detail in the original model. The integrated model can be used to investigate the degree to which production and environmental objectives are antagonistic, and it may help to explain and understand the complex mechanisms involved at the ruminal and metabolic levels. A part of the integrated model outputs were the forms of N and P in excreta and methane, which can be used as indices of environmental pollution. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that crop production is inherently vulnerable to variations in the weather and climate. More recently the influence of vegetation on the state of the atmosphere has been recognized. The seasonal growth of crops can influence the atmosphere and have local impacts on the weather, which in turn affects the rate of seasonal crop growth and development. Considering the coupled nature of the crop-climate system, and the fact that a significant proportion of land is devoted to the cultivation of crops, important interactions may be missed when studying crops and the climate system in isolation, particularly in the context of land use and climate change. To represent the two-way interactions between seasonal crop growth and atmospheric variability, we integrate a crop model developed specifically to operate at large spatial scales (General Large Area Model for annual crops) into the land surface component of a global climate model (GCM; HadAM3). In the new coupled crop-climate model, the simulated environment (atmosphere and soil states) influences growth and development of the crop, while simultaneously the temporal variations in crop leaf area and height across its growing season alter the characteristics of the land surface that are important determinants of surface fluxes of heat and moisture, as well as other aspects of the land-surface hydrological cycle. The coupled model realistically simulates the seasonal growth of a summer annual crop in response to the GCM's simulated weather and climate. The model also reproduces the observed relationship between seasonal rainfall and crop yield. The integration of a large-scale single crop model into a GCM, as described here, represents a first step towards the development of fully coupled crop and climate models. Future development priorities and challenges related to coupling crop and climate models are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problematic trace-antecedent relations between deep and surface structure have been a dominant theme in sentence comprehension in agrammatism. We challenge this view and propose that the comprehension in agrammatism in declarative sentences and wh-questions stems from impaired processing in logical form. We present new data from wh-questions and declarative sentences and advance a new hypothesis which we call the set partition hypothesis. We argue that elements that signal set partition operations influence sentence comprehension while trace-antecedent relations remain intact. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dependence of much of Africa on rain fed agriculture leads to a high vulnerability to fluctuations in rainfall amount. Hence, accurate monitoring of near-real time rainfall is particularly useful, for example in forewarning possible crop shortfalls in drought-prone areas. Unfortunately, ground based observations are often inadequate. Rainfall estimates from satellite-based algorithms and numerical model outputs can fill this data gap, however rigorous assessment of such estimates is required. In this case, three satellite based products (NOAA-RFE 2.0, GPCP-1DD and TAMSAT) and two numerical model outputs (ERA-40 and ERA-Interim) have been evaluated for Uganda in East Africa using a network of 27 rain gauges. The study focuses on the years 2001 to 2005 and considers the main rainy season (February to June). All data sets were converted to the same temporal and spatial scales. Kriging was used for the spatial interpolation of the gauge data. All three satellite products showed similar characteristics and had a high level of skill that exceeded both model outputs. ERA-Interim had a tendency to overestimate whilst ERA-40 consistently underestimated the Ugandan rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effect of choices of model structure and scale in development viability appraisal. The paper addresses two questions concerning the application of development appraisal techniques to viability modelling within the UK planning system. The first relates to the extent to which, given intrinsic input uncertainty, the choice of model structure significantly affects model outputs. The second concerns the extent to which, given intrinsic input uncertainty, the level of model complexity significantly affects model outputs. Monte Carlo simulation procedures are applied to a hypothetical development scheme in order to measure the effects of model aggregation and structure on model output variance. It is concluded that, given the particular scheme modelled and unavoidably subjective assumptions of input variance, simple and simplistic models may produce similar outputs to more robust and disaggregated models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.