820 resultados para database right
Resumo:
We present WebGeSTer DB, the largest database of intrinsic transcription terminators (http://pallab.serc.iisc.ernet.in/gester). The database comprises of a million terminators identified in 1060 bacterial genome sequences and 798 plasmids. Users can obtain both graphic and tabular results on putative terminators based on default or user-defined parameters. The results are arranged in different tiers to facilitate retrieval, as per the specific requirements. An interactive map has been incorporated to visualize the distribution of terminators across the whole genome. Analysis of the results, both at the whole-genome level and with respect to terminators downstream of specific genes, offers insight into the prevalence of canonical and non-canonical terminators across different phyla. The data in the database reinforce the paradigm that intrinsic termination is a conserved and efficient regulatory mechanism in bacteria. Our database is freely accessible.
Resumo:
We study a system of ordinary differential equations linked by parameters and subject to boundary conditions depending on parameters. We assume certain definiteness conditions on the coefficient functions and on the boundary conditions that yield, in the corresponding abstract setting, a right-definite case. We give results on location of the eigenvalues and oscillation of the eigenfunctions.
Resumo:
The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.
Resumo:
This paper describes the efforts at MILE lab, IISc, to create a 100,000-word database each in Kannada and Tamil for the design and development of Online Handwritten Recognition. It has been collected from over 600 users in order to capture the variations in writing style. We describe features of the scripts and how the number of symbols were reduced to be able to effectively train the data for recognition. The list of words include all the characters, Kannada and Indo-Arabic numerals, punctuations and other symbols. A semi-automated tool for the annotation of data from stroke to word level is used. It segments each word into stroke groups and also acts as a validation mechanism for segmentation. The tool displays the stroke, stroke groups and aksharas of a word and hence can be used to study the various styles of writing, delayed strokes and for assigning quality tags to the words. The tool is currently being used for annotating Tamil and Kannada data. The output is stored in a standard XML format.
Resumo:
This paper presents the preliminary analysis of Kannada WordNet and the set of relevant computational tools. Although the design has been inspired by the famous English WordNet, and to certain extent, by the Hindi WordNet, the unique features of Kannada WordNet are graded antonyms and meronymy relationships, nominal as well as verbal compoundings, complex verb constructions and efficient underlying database design (designed to handle storage and display of Kannada unicode characters). Kannada WordNet would not only add to the sparse collection of machine-readable Kannada dictionaries, but also will give new insights into the Kannada vocabulary. It provides sufficient interface for applications involved in Kannada machine translation, spell checker and semantic analyser.
Resumo:
N-gram language models and lexicon-based word-recognition are popular methods in the literature to improve recognition accuracies of online and offline handwritten data. However, there are very few works that deal with application of these techniques on online Tamil handwritten data. In this paper, we explore methods of developing symbol-level language models and a lexicon from a large Tamil text corpus and their application to improving symbol and word recognition accuracies. On a test database of around 2000 words, we find that bigram language models improve symbol (3%) and word recognition (8%) accuracies and while lexicon methods offer much greater improvements (30%) in terms of word recognition, there is a large dependency on choosing the right lexicon. For comparison to lexicon and language model based methods, we have also explored re-evaluation techniques which involve the use of expert classifiers to improve symbol and word recognition accuracies.
Resumo:
Protein structure alignment is a crucial step in protein structure-function analysis. Despite the advances in protein structure alignment algorithms, some of the local conformationally similar regions are mislabeled as structurally variable regions (SVRs). These regions are not well superimposed because of differences in their spatial orientations. The Database of Structural Alignments (DoSA) addresses this gap in identification of local structural similarities obscured in global protein structural alignments by realigning SVRs using an algorithm based on protein blocks. A set of protein blocks is a structural alphabet that abstracts protein structures into 16 unique local structural motifs. DoSA provides unique information about 159 780 conformationally similar and 56 140 conformationally dissimilar SVRs in 74 705 pairwise structural alignments of homologous proteins. The information provided on conformationally similar and dissimilar SVRs can be helpful to model loop regions. It is also conceivable that conformationally similar SVRs with conserved residues could potentially contribute toward functional integrity of homologues, and hence identifying such SVRs could be helpful in understanding the structural basis of protein function.
Resumo:
CONSPECTUS: The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen center dot center dot center dot halogen interactions (X center dot center dot center dot X) and halogen center dot center dot center dot heteroatom interactions (X center dot center dot center dot B). Many X center dot center dot center dot X and almost all X center dot center dot center dot B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms halogen and hydrogen are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X center dot center dot center dot X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen center dot center dot center dot halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen center dot center dot center dot halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering.
Resumo:
USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. (C) 2014 Acoustical Society of America.
Resumo:
Background: Haemophilus influenzae (H. Influenzae) is the causative agent of pneumonia, bacteraemia and meningitis. The organism is responsible for large number of deaths in both developed and developing countries. Even-though the first bacterial genome to be sequenced was that of H. Influenzae, there is no exclusive database dedicated for H. Influenzae. This prompted us to develop the Haemophilus influenzae Genome Database (HIGDB). Methods: All data of HIGDB are stored and managed in MySQL database. The HIGDB is hosted on Solaris server and developed using PERL modules. Ajax and JavaScript are used for the interface development. Results: The HIGDB contains detailed information on 42,741 proteins, 18,077 genes including 10 whole genome sequences and also 284 three dimensional structures of proteins of H. influenzae. In addition, the database provides ``Motif search'' and ``GBrowse''. The HIGDB is freely accessible through the URL:http://bioserverl.physicslisc.ernetin/HIGDB/. Discussion: The HIGDB will be a single point access for bacteriological, clinical, genomic and proteomic information of H. influenzae. The database can also be used to identify DNA motifs within H. influenzae genomes and to compare gene or protein sequences of a particular strain with other strains of H. influenzae. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Streptococcus pneumoniae causes pneumonia, septicemia and meningitis. S. pneumoniae is responsible for significant mortality both in children and in the elderly. In recent years, the whole genome sequencing of various S. pneumoniae strains have increased manifold and there is an urgent need to provide organism specific annotations to the scientific community. This prompted us to develop the Streptococcus pneumoniae Genome Database (SPGDB) to integrate and analyze the completely sequenced and available S. pneumoniae genome sequences. Further, links to several tools are provided to compare the pool of gene and protein sequences, and proteins structure across different strains of S. pneumoniae. SPGDB aids in the analysis of phenotypic variations as well as to perform extensive genomics and evolutionary studies with reference to S. pneumoniae. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
NrichD
Resumo:
Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.
Resumo:
Background: In the post-genomic era where sequences are being determined at a rapid rate, we are highly reliant on computational methods for their tentative biochemical characterization. The Pfam database currently contains 3,786 families corresponding to ``Domains of Unknown Function'' (DUF) or ``Uncharacterized Protein Family'' (UPF), of which 3,087 families have no reported three-dimensional structure, constituting almost one-fourth of the known protein families in search for both structure and function. Results: We applied a `computational structural genomics' approach using five state-of-the-art remote similarity detection methods to detect the relationship between uncharacterized DUFs and domain families of known structures. The association with a structural domain family could serve as a start point in elucidating the function of a DUF. Amongst these five methods, searches in SCOP-NrichD database have been applied for the first time. Predictions were classified into high, medium and low-confidence based on the consensus of results from various approaches and also annotated with enzyme and Gene ontology terms. 614 uncharacterized DUFs could be associated with a known structural domain, of which high confidence predictions, involving at least four methods, were made for 54 families. These structure-function relationships for the 614 DUF families can be accessed on-line at http://proline.biochem.iisc.ernet.in/RHD_DUFS/. For potential enzymes in this set, we assessed their compatibility with the associated fold and performed detailed structural and functional annotation by examining alignments and extent of conservation of functional residues. Detailed discussion is provided for interesting assignments for DUF3050, DUF1636, DUF1572, DUF2092 and DUF659. Conclusions: This study provides insights into the structure and potential function for nearly 20 % of the DUFs. Use of different computational approaches enables us to reliably recognize distant relationships, especially when they converge to a common assignment because the methods are often complementary. We observe that while pointers to the structural domain can offer the right clues to the function of a protein, recognition of its precise functional role is still `non-trivial' with many DUF domains conserving only some of the critical residues. It is not clear whether these are functional vestiges or instances involving alternate substrates and interacting partners. Reviewers: This article was reviewed by Drs Eugene Koonin, Frank Eisenhaber and Srikrishna Subramanian.