985 resultados para daniel wang
Resumo:
Tesis (Maestro en Ciencias de la Administración con Especialidad en Producción y Calidad) - U.A.N.L, 2001
Resumo:
Tesis (Maestría en Letras Españolas) U.A.N.L.
Resumo:
Daniel Weinstock, director of CRÉUM, interviews two professors that were invited to pursue their work at CRÉUM during the summer of 2008. His invitees are Lisa Eckenwiler, Associate Professor of Philosophy in the Department of Philosophy and in the Department of Health Administration and Policy at George Mason University; and Chris Macdonald, Associate Professor of Philosophy at Saint Mary’s University in Halifax. You will also hear General International, an experimental/avant-garde music band that was formed only a few months ago.
Resumo:
Ce mémoire en création littéraire se compose de deux parties. La première, un roman intitulé « Dieu reconnaîtra les seins », suit les aventures de Caroline, jeune femme dans la trentaine qui, ayant subi une ablation des seins, voit sa vie basculer alors qu'elle tente de trouver une solution médico-esthétique à sa situation. Le ton enjoué du roman permet d'aborder l'aspect tragique de la vie de Caroline de façon légère. Il permet également, sous forme d'humour ironique, absurde ou même noir, de soulever des thèmes universels tels que l'amour, la solitude, le désespoir, la pauvreté et la mort. Ainsi porté, le récit évolue vers une vision tant impitoyable que bienveillante de l'humain qui, à travers les événements à la fois médiocres et grandioses de la vie de Caroline, trouve sa place dans un univers pourtant hostile. La deuxième partie du mémoire se consacre à l'étude de l'humour dans « Au bonheur des ogres » de Daniel Pennac, et plus particulièrement, à l'humour inséré entre parenthèses. Pennac utilise abondamment ce procédé humoristique, créant ainsi un récit polyphonique où plusieurs niveaux narratifs entrent en dialogue. Trois types d'humour présents dans les parenthèses sont analysés, à savoir l'humour noir, l'humour absurde et l'ironie. Cet essai fait donc écho au roman en ce qu'il se penche sur l'humour et l'ironie comme procédés littéraires.
Resumo:
Ce travail a été réalisé à l’EBSI, Université de Montréal, dans le cadre du cours SCI6112 – Évaluation des archives donné au trimestre d’Hiver 2013 par Yvon Lemay
Resumo:
Avec la publication du «Théâtre postdramatique» d’Hans-Thies Lehmann et la montée de la performance dans la représentation théâtrale contemporaine, le drame, et avec lui le texte dramatique, semblent une fois de plus mis à mal. Or, la propension de certains ouvrages critiques à présenter comme cataclysmique l’avènement d’un théâtre postdramatique laisse en plan de nombreuses questions, notamment celle de la dynamique texte/scène qui, plutôt que d’en évacuer la première constituante, semble en métamorphoser les deux parties. Ce mémoire entend creuser la question du texte au sein de cette dynamique afin d’interroger ses mutations et les techniques d’approche qui permettent de l’intégrer dans une praxis théâtrale.
Resumo:
Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze, for the first time, the transcriptional host response of swine tracheal epithelial (NPTr) cells to H1N1 swine influenza virus (swH1N1) infection, S. suis serotype 2 infection and a dual infection, we carried out a comprehensive gene expression profiling using a microarray approach. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone resulted in fewer differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators such as chemokines, interleukins, cell adhesion molecules, and eicosanoids were significantly upregulated in the presence of both pathogens compared to infection with each pathogen individually. This synergy may be the consequence, at least in part, of an increased bacterial adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: Influenza virus would replicate in the respiratory epithelium and induce an inflammatory infiltrate comprised of mononuclear cells and neutrophils. In a co-infection situation, although these cells would be unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of proinflammatory mediators during a co-infection with influenza virus may be important in the pathogenesis and clinical outcome of S. suis-induced respiratory diseases.
Resumo:
L’avènement récent des approches littéraires en études bibliques a suscité un regain d’intérêt pour le livre de Daniel, et attiré l’attention autant sur ses qualités littéraires que sur sa véritable fonction sociale. Le livre de Daniel comprend deux sections : six récits (Daniel 1-6) et quatre visions (Daniel 7-12). Les récits racontent la confrontation entre la royauté divine céleste et la royauté humaine terrestre, au travers l’histoire de Daniel et ses amis, jeunes israélites exilés à la cour babylonienne. La méthode narrative explore comment se concrétise la narrativité dans un texte en procédant à l’inventaire des caractéristiques fondamentales d’un récit : l’intrigue, les personnages, le cadre, la temporalité et la voix narrative. Ce mémoire propose une analyse narrative systématique des récits du livre canonique de Daniel afin d’examiner l’évolution narrative du concept théologique de royauté. Cette approche permet d’accéder à un niveau textuel où l’intertextualité, l’ironie, le symbolisme et la polysémie imprègnent fortement ces récits subversifs.
Resumo:
Developments in mammalian cell culture and recombinant technology has allowed for the production of recombinant proteins for use as human therapeutics. Mammalian cell culture is typically operated at the physiological temperature of 37°. However, recent research has shown that the use of low-temperature conditions (30-33°) as a platform for cell-culture results in changes in cell characteristics, such as increased specific productivity and extended periods of cell viability, that can potentially improve the production of recombinant proteins. Furthermore, many recent reports have focused on investigating low-temperature mammalian cell culture of Chinese hamster ovary (CHO) cells, one of the principal cell-lines used in industrial production of recombinant proteins. Exposure to low ambient temperatures exerts an external stress on all living cells, and elicits a cellular response. This cold-stress response has been observed in bacteria, plants and mammals, and is regulated at the gene level. The exact genes and molecular mechanisms involved in the cold-stress response in prokaryotes and plants have been well studied. There are also various reports that detail the modification of cold-stress genes to improve the characteristics of bacteria or plant cells at low temperatures. However, there is very limited information on mammalian cold-stress genes or the related pathways governing the mammalian cold-stress response. This project seeks to investigate and characterise cold-stress genes that are differentially expressed during low-temperature culture of CHO cells, and to relate them to the various changes in cell characteristics observed in low-temperature culture of CHO cells. The gene information can then be used to modify CHO cell-lines for improved performance in the production of recombinant proteins.
Resumo:
Most glyco-engineering approaches used to improve quality of recombinant glycoproteins involve the manipulation of glycosyltransferase and/or glycosidase expression. We investigated whether the over expression of nucleotide sugar transporters, particularly the CMP-sialic acid transporter (CMP-SAT), would be a means to improve the sialylation process in CHO cells. We hypothesized that increasing the expression of the CMP-SAT in the cells would increase the transport of the CMP-sialic acid in the Golgi lumen, hence increasing the intra-lumenal CMP-sialic acid pool, and resulting in a possible increase in sialylation extent of proteins being produced. We report the construction of a CMP-SAT expression vector which was used for transfection into CHO-IFNγ, a CHO cell line producing human IFNγ. This resulted in approximately 2 to 5 times increase in total CMP-SAT expression in some of the positive clones as compared to untransfected CHO-IFNγ, as determined using real-time PCR analysis. This in turn concurred with a 9.6% to 16.3% percent increase in site sialylation. This engineering approach has thus been identified as a novel means of improving sialylation in recombinant glycoprotein therapeutics. This strategy can be utilized feasibly on its own, or in combination with existing sialylation improvement strategies. It is believed that such multi-prong approaches are required to effectively manipulate the complex sialylation process, so as to bring us closer to the goal of producing recombinant glycoproteins of high and consistent sialylation from mammalian cells.
Resumo:
We have developed a system to hunt and reuse special gene integration sites that allow for high and stable gene expression. A vector, named pRGFP8, was constructed. The plasmid pRGFP8 contains a reporter gene, gfp2 and two extraneous DNA fragments. The gene gfp2 makes it possible to screen the high expression regions on the chromosome. The extraneous DNA fragments can help to create the unique loci on the chromosome and increase the gene targeting frequency by increasing the homology. After transfection into Chinese hamster ovary cells (CHO) cells, the linearized pRGFP8 can integrate into the chromosome of the host cells and form the unique sites. With FACS, 90 millions transfected cells were sorted and the cells with strongest GFP expression were isolated, and then 8 stable high expression GFP CHO cell lines were selected as candidates for the new host cell. Taking the unique site created by pRGFP8 on the chromosome in the new host cells as a targeting locus, the gfp2 gene was replaced with the gene of interest, human ifngamma, by transfecting the targeting plasmid pRIH-IFN. Then using FACS, the cells with the dimmest GFP fluorescence were selected. These cells showed they had strong abilities to produce the protein of interest, IFN-gamma. During the gene targeting experiment, we found there is positive correlation between the fluorescence density of the GFP CHO host cells and the specific production rate of IFN-gamma. This result shows that the strategy in our expression system is correct: the production of the interesting protein increases with the increase fluorescence of the GFP host cells. This system, the new host cell lines and the targeting vector, can be utilized for highly expressing the gene of interest. More importantly, by using FACS, we can fully screen all the transfected cells, which can reduce the chances of losing the best cells.
Resumo:
In the field of biologics production, productivity and stability of the transfected gene of interest are two very important attributes that dictate if a production process is viable. To further understand and improve these two traits, we would need to further our understanding of the factors affecting them. These would include integration site of the gene, gene copy number, cell phenotypic variation and cell environment. As these factors play different parts in the development process, they lead to variable productivity and stability of the transfected gene between clones, the well-known phenomenon of “clonal variation”. A study of this phenomenon and how the various factors contribute to it will thus shed light on strategies to improve productivity and stability in the production cell line. Of the four factors, the site of gene integration appears to be one of the most important. Hence, it is proposed that work is done on studying how different integration sites affect the productivity and stability of transfected genes in the development process. For the study to be more industrially relevant, it is proposed that the Chinese Hamster Ovary dhfr-deficient cell line, CHO-DG44, is used as the model system.
Resumo:
In this work we have made significant contributions in three different areas of interest: therapeutic protein stabilization, thermodynamics of natural gas clathrate-hydrates, and zeolite catalysis. In all three fields, using our various computational techniques, we have been able to elucidate phenomena that are difficult or impossible to explain experimentally. More specifically, in mixed solvent systems for proteins we developed a statistical-mechanical method to model the thermodynamic effects of additives in molecular-level detail. It was the first method demonstrated to have truly predictive (no adjustable parameters) capability for real protein systems. We also describe a novel mechanism that slows protein association reactions, called the “gap effect.” We developed a comprehensive picture of methioine oxidation by hydrogen peroxide that allows for accurate prediction of protein oxidation and provides a rationale for developing strategies to control oxidation. The method of solvent accessible area (SAA) was shown not to correlate well with oxidation rates. A new property, averaged two-shell water coordination number (2SWCN) was identified and shown to correlate well with oxidation rates. Reference parameters for the van der Waals Platteeuw model of clathrate-hydrates were found for structure I and structure II. These reference parameters are independent of the potential form (unlike the commonly used parameters) and have been validated by calculating phase behavior and structural transitions for mixed hydrate systems. These calculations are validated with experimental data for both structures and for systems that undergo transitions from one structure to another. This is the first method of calculating hydrate thermodynamics to demonstrate predictive capability for phase equilibria, structural changes, and occupancy in pure and mixed hydrate systems. We have computed a new mechanism for the methanol coupling reaction to form ethanol and water in the zeolite chabazite. The mechanism at 400°C proceeds via stable intermediates of water, methane, and protonated formaldehyde.
Resumo:
One of the major problems in the operations of mammalian cell bioreactors is the detrimental effect of gas sparging. Since the most convenient way to oxygenate any bioreactor is by gas sparging, this adverse effect has often been one of the limiting oxygen transport problems in both laboratory and industrial mammalian cell bioreactors. When one examines the literature on the effect of gas sparging on the death of mammalian cells, a great deal of confusions has been reported. It is not clear from the published literature as to the leading cause for gas-sparged related cell death. These confusions prevent the rational design and operations of mammalian cell bioreactors. In our laboratory, we have attempted to address this problem both fundamentally as well as attempt to obtain a general understanding on the adverse effect of gas sparging. Our analyses first examined the fluid shear associated with the various sections that the gas bubbles encounter during entrance, passage through the bioreactor and the final exit of the gas bubbles. Our analyses showed that the major damage of the mammalian cells by gas bubbles is due to the burst of the bubbles when exiting the bioreactor. It was also our hypothesis that the entrained cells in the liquid boundary layer of the gas bubble upon bursting is the major cause for cell death. We have corroborated this hypothesis by correlating the liquid entrainment with the cell death rate using results from our laboratory as well as other studies. Pluonic F-68, a weak surfactant, has routinely been used in laboratory and industrial bioreactors. In the past, the protective effect of Pluronic F-68 has never been shown as to why it is effective. In our research, we have data using microphotography which clearly demonstrated and corroborated our entrainment hypothesis is the major reason for the effectiveness of Pluronic F-68 in protecting the cells from gas-sparged related cell death.