927 resultados para cryptographic pairing computation, elliptic curve cryptography
Computation of ECG signal features using MCMC modelling in software and FPGA reconfigurable hardware
Resumo:
Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.
Resumo:
The ability of cloud computing to provide almost unlimited storage, backup and recovery, and quick deployment contributes to its widespread attention and implementation. Cloud computing has also become an attractive choice for mobile users as well. Due to limited features of mobile devices such as power scarcity and inability to cater computationintensive tasks, selected computation needs to be outsourced to the resourceful cloud servers. However, there are many challenges which need to be addressed in computation offloading for mobile cloud computing such as communication cost, connectivity maintenance and incurred latency. This paper presents taxonomy of the computation offloading approaches which aim to address the challenges. The taxonomy provides guidelines to identify research scopes in computation offloading for mobile cloud computing. We also outline directions and anticipated trends for future research.
Resumo:
This book constitutes the refereed proceedings of the 11th International Conference on Cryptology and Network Security, CANS 2012, held in Darmstadt, Germany, in December 2012. The 22 revised full papers, presented were carefully reviewed and selected from 99 submissions. The papers are organized in topical sections on cryptanalysis; network security; cryptographic protocols; encryption; and s-box theory.
Resumo:
Universal One-Way Hash Functions (UOWHFs) may be used in place of collision-resistant functions in many public-key cryptographic applications. At Asiacrypt 2004, Hong, Preneel and Lee introduced the stronger security notion of higher order UOWHFs to allow construction of long-input UOWHFs using the Merkle-Damgård domain extender. However, they did not provide any provably secure constructions for higher order UOWHFs. We show that the subset sum hash function is a kth order Universal One-Way Hash Function (hashing n bits to m < n bits) under the Subset Sum assumption for k = O(log m). Therefore we strengthen a previous result of Impagliazzo and Naor, who showed that the subset sum hash function is a UOWHF under the Subset Sum assumption. We believe our result is of theoretical interest; as far as we are aware, it is the first example of a natural and computationally efficient UOWHF which is also a provably secure higher order UOWHF under the same well-known cryptographic assumption, whereas this assumption does not seem sufficient to prove its collision-resistance. A consequence of our result is that one can apply the Merkle-Damgård extender to the subset sum compression function with ‘extension factor’ k+1, while losing (at most) about k bits of UOWHF security relative to the UOWHF security of the compression function. The method also leads to a saving of up to m log(k+1) bits in key length relative to the Shoup XOR-Mask domain extender applied to the subset sum compression function.
Resumo:
One-time proxy signatures are one-time signatures for which a primary signer can delegate his or her signing capability to a proxy signer. In this work we propose two one-time proxy signature schemes with different security properties. Unlike other existing one-time proxy signatures that are constructed from public key cryptography, our proposed schemes are based one-way functions without trapdoors and so they inherit the communication and computation efficiency from the traditional one-time signatures. Although from a verifier point of view, signatures generated by the proxy are indistinguishable from those created by the primary signer, a trusted authority can be equipped with an algorithm that allows the authority to settle disputes between the signers. In our constructions, we use a combination of one-time signatures, oblivious transfer protocols and certain combinatorial objects. We characterise these new combinatorial objects and present constructions for them.
Resumo:
We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity O(n*2t+1^2/t) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n*t^2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.
Resumo:
The spatiotemporal dynamics of an alien species invasion across a real landscape are typically complex. While surveillance is an essential part of a management response, planning surveillance in space and time present a difficult challenge due to this complexity. We show here a method for determining the highest probability sites for occupancy across a landscape at an arbitrary point in the future, based on occupancy data from a single slice in time. We apply to the method to the invasion of Giant Hogweed, a serious weed in the Czech republic and throughout Europe.
Resumo:
China is an emerging and leading world economy. The pace of economic change has been tremendously rapid since the beginning of economic reforms. Despite the importance of the Environmental Kuznets Curve (EKC) and environmental problems in China, no previous study has tested the EKC in China because of the difficulty in obtaining data and the need to adjust the data. The focus of this paper is to test the EKC in China using province level data over the period 1992-2003. This study applies non-parametric techniques to estimate the relationship between income and the environmental quality of wastewater, air pollution and solid waste. Copyright © 2009 Inderscience Enterprises Ltd.
Resumo:
This study decomposed the determinants of environmental quality into scale, technique, and composition effects. We applied a semiparametric method of generalized additive models, which enabled us to use flexible functional forms and include several independent variables in the model. The differences in the technique effect were found to play a crucial role in reducing pollution. We found that the technique effect was sufficient to reduce sulfur dioxide emissions. On the other hand, its effect was not enough to reduce carbon dioxide (CO2) emissions and energy use, except for the case of CO2 emissions in high-income countries.
Resumo:
As a result of India's extremely rapid economic growth, the scale and seriousness of environmental problems are no longer in doubt. Whether pollution abatement technologies are utilized more efficiently is crucial in the analysis of environmental management because it influences the cost of alternative production and pollution abatement technologies. In this study, we use state-level industry data of sulfur dioxide, nitrogen dioxide, and suspended particular matter over the period 1991-2003. Employing recently developed productivity measurement technique, we show that overall environmental productivities decrease over time in India. Furthermore, we analyze the determinants of environmental productivities and find environmental Kuznets curve type relationship existences between environmental productivity and income. Panel analysis results show that the scale effect dominates over the technique effect. Therefore, a combined effect of income on environmental productivity is negative.
Resumo:
Quantifying the impact of biochemical compounds on collective cell spreading is an essential element of drug design, with various applications including developing treatments for chronic wounds and cancer. Scratch assays are a technically simple and inexpensive method used to study collective cell spreading; however, most previous interpretations of scratch assays are qualitative and do not provide estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and l is important for investigating the efficacy of a potential treatment and provides insight into the mechanism through which the potential treatment acts. While a few methods for estimating D and l have been proposed, these previous methods lead to point estimates of D and l, and provide no insight into the uncertainty in these estimates. Here, we compare various types of information that can be extracted from images of a scratch assay, and quantify D and l using discrete computational simulations and approximate Bayesian computation. We show that it is possible to robustly recover estimates of D and l from synthetic data, as well as a new set of experimental data. For the first time, our approach also provides a method to estimate the uncertainty in our estimates of D and l. We anticipate that our approach can be generalized to deal with more realistic experimental scenarios in which we are interested in estimating D and l, as well as additional relevant parameters such as the strength of cell-to-cell adhesion or the strength of cell-to-substrate adhesion.
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.
Resumo:
Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.
Resumo:
Designed for undergraduate and postgraduate students, academic researchers and industrial practitioners, this book provides comprehensive case studies on numerical computing of industrial processes and step-by-step procedures for conducting industrial computing. It assumes minimal knowledge in numerical computing and computer programming, making it easy to read, understand and follow. Topics discussed include fundamentals of industrial computing, finite difference methods, the Wavelet-Collocation Method, the Wavelet-Galerkin Method, High Resolution Methods, and comparative studies of various methods. These are discussed using examples of carefully selected models from real processes of industrial significance. The step-by-step procedures in all these case studies can be easily applied to other industrial processes without a need for major changes and thus provide readers with useful frameworks for the applications of engineering computing in fundamental research problems and practical development scenarios.