899 resultados para critical exponents and amplitudes (experiment)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature T-c of a harmonically confined Bose gas as reported in Gerbier , Phys. Rev. Lett. 92, 030405 (2004). The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different microscopic models exhibiting self-organized criticality are studied numerically and analytically. Numerical simulations are performed to compute critical exponents, mainly the dynamical exponent, and to check universality classes. We find that various models lead to the same exponent, but this universality class is sensitive to disorder. From the dynamic microscopic rules we obtain continuum equations with different sources of noise, which we call internal and external. Different correlations of the noise give rise to different critical behavior. A model for external noise is proposed that makes the upper critical dimensionality equal to 4 and leads to the possible existence of a phase transition above d=4. Limitations of the approach of these models by a simple nonlinear equation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the raise and peel model of a one-dimensional fluctuating interface in the presence of an attractive wall. The model can also describe a pair annihilation process in disordered unquenched media with a source at one end of the system. For the stationary states, several density profiles are studied using Monte Carlo simulations. We point out a deep connection between some profiles seen in the presence of the wall and in its absence. Our results are discussed in the context of conformal invariance ( c = 0 theory). We discover some unexpected values for the critical exponents, which are obtained using combinatorial methods. We have solved known ( Pascal`s hexagon) and new (split-hexagon) bilinear recurrence relations. The solutions of these equations are interesting in their own right since they give information on certain classes of alternating sign matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up to now the raise-and-peel model was the single known example of a one-dimensional stochastic process where one can observe conformal invariance. The model has one parameter. Depending on its value one has a gapped phase, a critical point where one has conformal invariance, and a gapless phase with changing values of the dynamical critical exponent z. In this model, adsorption is local but desorption is not. The raise-and-strip model presented here, in which desorption is also nonlocal, has the same phase diagram. The critical exponents are different as are some physical properties of the model. Our study suggests the possible existence of a whole class of stochastic models in which one can observe conformal invariance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the critical behavior of the spectral weight of a single quasiparticle, one of the key observables in experiment, for the particular case of the transverse Ising model. Series expansions are calculated for the linear chain and the square and simple cubic lattices. For the chain model, a conjectured exact result is discovered. For the square and simple cubic lattices, series analyses are used to estimate the critical exponents. The results agree with the general predictions of Sachdev [Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random walks can undergo transitions from normal diffusion to anomalous diffusion as some relevant parameter varies, for instance the L,vy index in L,vy flights. Here we derive the Fokker-Planck equation for a two-parameter family of non-Markovian random walks with amnestically induced persistence. We investigate two distinct transitions: one order parameter quantifies log-periodicity and discrete scale invariance in the first moment of the propagator, whereas the second order parameter, known as the Hurst exponent, describes the growth of the second moment. We report numerical and analytical results for six critical exponents, which together completely characterize the properties of the transitions. We find that the critical exponents related to the diffusion-superdiffusion transition are identical in the positive feedback and negative feedback branches of the critical line, even though the former leads to classical superdiffusion whereas the latter gives rise to log-periodic superdiffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard critical power test protocol on the cycle prescribes a series of trials to exhaustion, each at a different but constant power setting. Recently the protocol has been modified and applied to a series of trials to exhaustion each at a different ramp incremental rate. This study was undertaken to compare critical power and anaerobic work capacity estimates in the same group of subjects when derived from the two protocols. Ten male subjects of mixed athletic ability cycled to exhaustion on eight occasions in randomized order over a 3-wk period. Four trials were performed at differing constant power settings and four trials on differing ramp incremental rates. Both critical power and anaerobic work capacity were estimated for each subject by curve fitting of the ramp model and of three versions of the constant power model. After adjusting for inter-subject variability, no significant differences were detected between critical power estimates or between anaerobic work capacity estimates from any model formulation or from the two protocols. It is concluded that both the ramp and constant power protocols produce equivalent estimates for critical power and anaerobic work capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder system, the determined critical exponents do not belong to the same universality class as the lattice percolation,although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical exponents has a typical value for a 3D lattice system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gravity Recovery and Climate Experiment (GRACE) mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS) at a 10-day interval were converted into equivalent water height (EWH) for a ~4-year period in the Amazon basin (from July-2002 to May-2006). The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm) and spectrum truncation (10 ~ 15 mm). Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS) in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80%) is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.