872 resultados para computer science, artificial Intelligence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, it has been observed that software clones and plagiarism are becoming an increased threat for one?s creativity. Clones are the results of copying and using other?s work. According to the Merriam – Webster dictionary, “A clone is one that appears to be a copy of an original form”. It is synonym to duplicate. Clones lead to redundancy of codes, but not all redundant code is a clone.On basis of this background knowledge ,in order to safeguard one?s idea and to avoid intentional code duplication for pretending other?s work as if their owns, software clone detection should be emphasized more. The objective of this paper is to review the methods for clone detection and to apply those methods for finding the extent of plagiarism occurrence among the Swedish Universities in Master level computer science department and to analyze the results.The rest part of the paper, discuss about software plagiarism detection which employs data analysis technique and then statistical analysis of the results.Plagiarism is an act of stealing and passing off the idea?s and words of another person?s as one?s own. Using data analysis technique, samples(Master level computer Science thesis report) were taken from various Swedish universities and processed in Ephorus anti plagiarism software detection. Ephorus gives the percentage of plagiarism for each thesis document, from this results statistical analysis were carried out using Minitab Software.The results gives a very low percentage of Plagiarism extent among the Swedish universities, which concludes that Plagiarism is not a threat to Sweden?s standard of education in computer science.This paper is based on data analysis, intelligence techniques, EPHORUS software plagiarism detection tool and MINITAB statistical software analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce a DAI approach called hereinafter Fuzzy Distributed Artificial Intelligence (FDAI). Through the use of fuzzy logic, we have been able to develop mechanisms that we feel may effectively improve current DAI systems, giving much more flexibility and providing the subsidies which a formal theory can bring. The appropriateness of the FDAI approach is explored in an important application, a fuzzy distributed traffic-light control system, where we have been able to aggregate and study several issues concerned with fuzzy and distributed artificial intelligence. We also present a number of current research directions necessary to develop the FDAI approach more fully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"March 1980."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beginning from 1991, Russian (initially Soviet) Association for Artificial Intelligence (RAAI) publishes the own journal ‘News of Artificial Intelligence’. The journal is founded on the initiative of the famous specialist in the field of Artificial Intelligence (AI), the first president of Soviet Association for Artificial Intelligence, the academician of Russian Academy of Natural Science (RANS), doctor of technical sciences (d.t.s.), professor D.A. Pospelov, which from 1991 up to 2001 was its main editor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult-there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of principles from the study of artifacts. This point was raised in Curriculum 2001 discussions, and debate needs to start in good time for the next curriculum standard. This paper provides a starting point for debate, by outlining a process by which principles and artifacts may be separated, and presents a sample curriculum to illustrate the possibilities. This sample curriculum has some positive points, though these positive points are incidental to the need to start debating the issue. Other models, with a less rigorous ordering of principles before artifacts, would still gain from making it clearer whether a specific concept was fundamental, or a property of a specific technology. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss interesting developments of expert systems for machine diagnosis and condition-based maintenance. We review some elements of condition-based maintenance and its applications, expert systems for machine diagnosis, and an example of machine diagnosis. In the last section we note some problems to be resolved so that expert systems for machine diagnosis may gain wider acceptance in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.