947 resultados para common method variance
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
La diffamation sur Internet : actualiser la responsabilité en droit civil et en common law au Canada
Resumo:
En cette ère que plusieurs surnomment le « Web 2.0 », les usagers se sont emparés avec enthousiasme des fonctions liées aux communications et au partage sur Internet, ce médium devenant ainsi une nouvelle plate-forme pour les enjeux liés à la vie privée et à la réputation. La diffamation constitue justement un des problèmes prédominants constatés en lien avec ce contenu électronique, plus particulièrement lorsqu’il est question de contenu généré par les utilisateurs. Face à cet outil permettant une diffusion et une intéractivité sans précédent, comment devons-nous aborder Internet au regard des règles de droit applicables au Canada en matière de diffamation? L’analyse juridique traditionnelle sied-elle aux nouvelles réalités introduites par ce médium? Le bijuridisme canadien nous impose d’étudier parallèlement les régimes de droit civil et de common law et ce, dans une optique comparative afin de comprendre les concepts et le fonctionnement propres à chacune des approches juridiques cohabitant au pays. Cette analyse nous permettra de mettre en lumière les particularités du médium électronique qui se révèlent pertinentes lorsqu’il est question de diffamation et qui font la spécificité des situations et des acteurs en ligne, distinguant ainsi Internet des modes de communications traditionnels que le droit connaît. Cette approche comparative permet de poser un regard critique sur chacun des régimes de droit en vigueur au Canada, considérant la réalité propre à Internet et au contenu généré par les utilisateurs, mais surtout, vise à promouvoir le développement de méthodes d’analyse véritablement ancrées dans le fonctionnement du médium en cause et susceptibles d’évoluer avec celui-ci.
Resumo:
This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.
Resumo:
Els estudis de supervivència s'interessen pel temps que passa des de l'inici de l'estudi (diagnòstic de la malaltia, inici del tractament,...) fins que es produeix l'esdeveniment d'interès (mort, curació, millora,...). No obstant això, moltes vegades aquest esdeveniment s'observa més d'una vegada en un mateix individu durant el període de seguiment (dades de supervivència multivariant). En aquest cas, és necessari utilitzar una metodologia diferent a la utilitzada en l'anàlisi de supervivència estàndard. El principal problema que l'estudi d'aquest tipus de dades comporta és que les observacions poden no ser independents. Fins ara, aquest problema s'ha solucionat de dues maneres diferents en funció de la variable dependent. Si aquesta variable segueix una distribució de la família exponencial s'utilitzen els models lineals generalitzats mixtes (GLMM); i si aquesta variable és el temps, variable amb una distribució de probabilitat no pertanyent a aquesta família, s'utilitza l'anàlisi de supervivència multivariant. El que es pretén en aquesta tesis és unificar aquests dos enfocs, és a dir, utilitzar una variable dependent que sigui el temps amb agrupacions d'individus o d'observacions, a partir d'un GLMM, amb la finalitat d'introduir nous mètodes pel tractament d'aquest tipus de dades.
Resumo:
To identify the causes of population decline in migratory birds, researchers must determine the relative influence of environmental changes on population dynamics while the birds are on breeding grounds, wintering grounds, and en route between the two. This is problematic when the wintering areas of specific populations are unknown. Here, we first identified the putative wintering areas of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) populations breeding in northern Italy as those areas, within the wintering ranges of these species, where the winter Normalized Difference Vegetation Index (NDVI), which may affect winter survival, best predicted annual variation in population indices observed in the breeding grounds in 1992–2009. In these analyses, we controlled for the potentially confounding effects of rainfall in the breeding grounds during the previous year, which may affect reproductive success; the North Atlantic Oscillation Index (NAO), which may account for climatic conditions faced by birds during migration; and the linear and squared term of year, which account for nonlinear population trends. The areas thus identified ranged from Guinea to Nigeria for the Common House-Martin, and were located in southern Ghana for the Common Swift. We then regressed annual population indices on mean NDVI values in the putative wintering areas and on the other variables, and used Bayesian model averaging (BMA) and hierarchical partitioning (HP) of variance to assess their relative contribution to population dynamics. We re-ran all the analyses using NDVI values at different spatial scales, and consistently found that our population of Common House-Martin was primarily affected by spring rainfall (43%–47.7% explained variance) and NDVI (24%–26.9%), while the Common Swift population was primarily affected by the NDVI (22.7%–34.8%). Although these results must be further validated, currently they are the only hypotheses about the wintering grounds of the Italian populations of these species, as no Common House-Martin and Common Swift ringed in Italy have been recovered in their wintering ranges.
Resumo:
Objectives - To assess the general public's interpretation of the verbal descriptors for side effect frequency recommended for use in medicine information leaflets by a European Union (EU) guideline, and to examine the extent to which differences in interpretation affect people's perception of risk and their judgments of intention to comply with the prescribed treatment. Method - Two studies used a controlled empirical methodology in which people were presented with a hypothetical, but realistic, scenario about visiting their general practitioner and being prescribed medication. They were given an explanation that focused on the side effects of the medicine, together with information about the probability of occurrence using either numerical percentages or the corresponding EU verbal descriptors. Interpretation of the descriptors was assessed. In study 2, participants were also required to make various judgments, including risk to health and intention to comply. Key findings - In both studies, use of the EU recommended descriptors led to significant overestimations of the likelihood of particular side effects occurring. Study 2 further showed that the "overestimation" resulted in significantly increased ratings of perceived severity of side effects and risk to health, as well as significantly reduced ratings of intention to comply, compared with those for people who received the probability information in numerical form. Conclusion - While it is recognised that the current findings require replication in a clinical setting, the European and national authorities should suspend the use of the EU recommended terms until further research is available to allow the use of an evidence-based approach.
Resumo:
Wavenumber-frequency spectral analysis and linear wave theory are combined in a novel method to quantitatively estimate equatorial wave activity in the tropical lower stratosphere. The method requires temperature and velocity observations that are regularly spaced in latitude, longitude and time; it is therefore applied to the ECMWF 15-year re-analysis dataset (ERA-15). Signals consistent with idealized Kelvin and Rossby-gravity waves are found at wavenumbers and frequencies in agreement with previous studies. When averaged over 1981-93, the Kelvin wave explains approximately 1 K-2 of temperature variance on the equator at 100 hPa, while the Rossby-gravity wave explains approximately 1 m(2)s(-2) of meridional wind variance. Some inertio-gravity wave and equatorial Rossby wave signals are also found; however the resolution of ERA-15 is not sufficient for the method to provide an accurate climatology of waves with high meridional structure.
Resumo:
An aggregated farm-level index, the Agri-environmental Footprint Index (AFI), based on multiple criteria methods and representing a harmonised approach to evaluation of EU agri-environmental schemes is described. The index uses a common framework for the design and evaluation of policy that can be customised to locally relevant agri-environmental issues and circumstances. Evaluation can be strictly policy-focused, or broader and more holistic in that context-relevant assessment criteria that are not necessarily considered in the evaluated policy can nevertheless be incorporated. The Index structure is flexible, and can respond to diverse local needs. The process of Index construction is interactive, engaging farmers and other relevant stakeholders in a transparent decision-making process that can ensure acceptance of the outcome, help to forge an improved understanding of local agri-environmental priorities and potentially increase awareness of the critical role of farmers in environmental management. The structure of the AFI facilitates post-evaluation analysis of relative performance in different dimensions of the agri-environment, permitting identification of current strengths and weaknesses, and enabling future improvement in policy design. Quantification of the environmental impact of agriculture beyond the stated aims of policy using an 'unweighted' form of the AFI has potential as the basis of an ongoing system of environmental audit within a specified agricultural context. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs.We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.
Resumo:
We show that the Hájek (Ann. Math Statist. (1964) 1491) variance estimator can be used to estimate the variance of the Horvitz–Thompson estimator when the Chao sampling scheme (Chao, Biometrika 69 (1982) 653) is implemented. This estimator is simple and can be implemented with any statistical packages. We consider a numerical and an analytic method to show that this estimator can be used. A series of simulations supports our findings.
Resumo:
This paper considers the problem of estimation when one of a number of populations, assumed normal with known common variance, is selected on the basis of it having the largest observed mean. Conditional on selection of the population, the observed mean is a biased estimate of the true mean. This problem arises in the analysis of clinical trials in which selection is made between a number of experimental treatments that are compared with each other either with or without an additional control treatment. Attempts to obtain approximately unbiased estimates in this setting have been proposed by Shen [2001. An improved method of evaluating drug effect in a multiple dose clinical trial. Statist. Medicine 20, 1913–1929] and Stallard and Todd [2005. Point estimates and confidence regions for sequential trials involving selection. J. Statist. Plann. Inference 135, 402–419]. This paper explores the problem in the simple setting in which two experimental treatments are compared in a single analysis. It is shown that in this case the estimate of Stallard and Todd is the maximum-likelihood estimate (m.l.e.), and this is compared with the estimate proposed by Shen. In particular, it is shown that the m.l.e. has infinite expectation whatever the true value of the mean being estimated. We show that there is no conditionally unbiased estimator, and propose a new family of approximately conditionally unbiased estimators, comparing these with the estimators suggested by Shen.
Resumo:
This paper presents a simple Bayesian approach to sample size determination in clinical trials. It is required that the trial should be large enough to ensure that the data collected will provide convincing evidence either that an experimental treatment is better than a control or that it fails to improve upon control by some clinically relevant difference. The method resembles standard frequentist formulations of the problem, and indeed in certain circumstances involving 'non-informative' prior information it leads to identical answers. In particular, unlike many Bayesian approaches to sample size determination, use is made of an alternative hypothesis that an experimental treatment is better than a control treatment by some specified magnitude. The approach is introduced in the context of testing whether a single stream of binary observations are consistent with a given success rate p(0). Next the case of comparing two independent streams of normally distributed responses is considered, first under the assumption that their common variance is known and then for unknown variance. Finally, the more general situation in which a large sample is to be collected and analysed according to the asymptotic properties of the score statistic is explored. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.
Resumo:
A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.