974 resultados para climate – adverse effects
Resumo:
The impact of nanoparticles (NPs) in medicine and biology has increased rapidly in recent years. Gold NPs have advantageous properties such as chemical stability, high electron density and affinity to biomolecules, making them very promising candidates as drug carriers and diagnostic tools. However, diverse studies on the toxicity of gold NPs have reported contradictory results. To address this issue, a triple cell co-culture model simulating the alveolar lung epithelium was used and exposed at the air-liquid interface. The cell cultures were exposed to characterized aerosols with 15 nm gold particles (61 ng Au/cm2 and 561 ng Au/cm2 deposition) and incubated for 4 h and 24 h. Experiments were repeated six times. The mRNA induction of pro-inflammatory (TNFalpha, IL-8, iNOS) and oxidative stress markers (HO-1, SOD2) was measured, as well as protein induction of pro- and anti-inflammatory cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, TNFalpha, INFgamma). A pre-stimulation with lipopolysaccharide (LPS) was performed to further study the effects of particles under inflammatory conditions. Particle deposition and particle uptake by cells were analyzed by transmission electron microscopy and design-based stereology. A homogeneous deposition was revealed, and particles were found to enter all cell types. No mRNA induction due to particles was observed for all markers. The cell culture system was sensitive to LPS but gold particles did not cause any synergistic or suppressive effects. With this experimental setup, reflecting the physiological conditions more precisely, no adverse effects from gold NPs were observed. However, chronic studies under in vivo conditions are needed to entirely exclude adverse effects.
Resumo:
The close resemblance of carbon nanotubes to asbestos fibers regarding their high aspect ratio, biopersistence and reactivity increases public concerns on the widespread use of these materials. The purpose of this study was not only to address the acute adverse effects of industrially produced multiwalled carbon nanotubes (MWCNTs) on human lung and immune cells in vitro but also to further understand if their accumulation and biopersistence leads to long-term consequences or induces adaptive changes in these cells. In contrast to asbestos fibers, pristine MWCNTs did not induce overt cell death in A549 lung epithelial cells and Jurkat T lymphocytes after acute exposure to high doses of this material (up to 30 g/ml). Nevertheless, very high levels of reactive oxygen species (ROS) and decreased metabolic activity were observed which might affect long-term viability of these cells. However, the continuous presence of low amounts of MWCNTs (0.5 g/ml) for 6 months did not have major adverse long-term effects although large amounts of nanotubes accumulated at least in A549 cells. Moreover, MWCNTs did not appear to induce adaptive mechanisms against particle stress in long-term treated A549 cells. Our study demonstrates that despite the high potential for ROS formation, pristine MWCNTs can accumulate and persist within cells without having major long-term consequences or inducing adaptive mechanisms.
Resumo:
The antithyroid drugs mainly include thioimidazole (carbimazole, methimazole=thiamazole) and propylthiouracil. After absorption, carbimazole is rapidly metabolized to methimazole and thus switching between these two drugs should not be considered in case of side effects. Furthermore, in case of side effects, sometimes even cross reactions between thioimidazoles and propylthiouracil occur. Common and typical adverse reactions of antithyroid drugs include dose dependent hypothyroidism and thus thyroid function should be repeatedly checked while the patient is on antithyroid drugs. Furthermore, pruritus and rash may develop. In this case, one might try to switch from thioimidazoles to propylthiouracil or vice versa. Antithyroid drugs may cause mild dose dependent neutropenia or severe allergy-mediated agranulocytosis, which typically occurs during the first three months of treatment, has an incidence of 3 per 10,000 patients and cross reactivity between thioimidazoles to propylthiouracil may occur. Rarely, antithyroid drugs can cause aplastic anemia. Mainly propylthiouracil, but sometimes also methimazole may lead to an asymptomatic transient increase in liver enzymes or to severe, even lethal liver injury of cholestatic or hepatocellular pattern. Since propylthiouracil associated liver injury was observed increasingly among children and adolescent, it has been suggested to prefer thioimidazoles for these patients. Because of these potential serious adverse effects, physicians should advise patients to immediately seek medical help if they get a fever or sore throat or malaise, abdominal complaints or jaundice, respectively. Furthermore, arthralgias may develop in 1-5% of patients under both antithyroid drugs. Since arthralgias may be the first symptom of more serious immunologic side effects, it is recommended to stop the antithyroid drug in this case. Drug induced polyarthritis mainly develops during the first month of therapy, whereas ANCA-positive vasculitis is generally observed only after long term exposure to propylthiouracil or very rarely with the thioimidazoles. The teratogenic risk of the thioimidazoles is somewhat higher (Aplasia cutis congenita), that is why one generally recommends preferring propylthiouracil during pregnancy. During breast feeding both, thioimidazoles or propylthiouracil, may be administered. Nowadays, perchlorate is only used short term in case of latent hyperthyroidism before administering iodine-containing contrast agents. Therefore, the known side effects, which usually are only observed after long term treatment, are not an issue any more.
Resumo:
Despite promising reports of the use of omalizumab as add-on therapy in patients with systemic mastocytosis and recurrent anaphylaxis during specific venom immunotherapy (VIT), unpredicted adverse effects may lead to therapy failure. We present the case of a patient with systemic mastocytosis and Hymenoptera venom allergy who was administered omalizumab as add-on therapy to improve VIT tolerability after repeated severe adverse reactions despite H1/H2-antihistamine prophylaxis. We describe an unexpected discontinuation of omalizumab following successful initiation of VIT in a patient with systemic mastocytosis, with subsequent lack of tolerability of VIT. An interesting aspect of this case is the correlation of basophil activation test results with both clinical tolerability and VIT intolerance.
Resumo:
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C:N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.
Resumo:
OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.
Resumo:
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.
Resumo:
We tested the hypothesis that occupational clothing would impair performance during swimming. The sub questions included: (1) Will the standard work wear of a railway worker or laborer impede swimming ability? (2) Will this clothing impact the individual’s ability to tread water? We addressed the research questions with three hypotheses. Analysis showed statistically significant p-values and all three null hypotheses were rejected in favor of the three research hypotheses, showing strong evidence that standard labor wear had adverse effects on 11.43 meter/12.5 yard swim time, water treading time and rate of perceived exertion (RPE) during water treading. The mean swim time more than doubled when the subjects wore standard labor-wear and their average rate of perceived exertion increased from 11.6 in standard swim wear to 17.1 in standard laborwear. It may be beneficial for those workers who work near water to be exposed to educational programs that allow in-water experiences so they develop an understanding of their abilities in, and respect for, the water.
Resumo:
The availability of recombinant human growth hormone (GH) has resulted in investigation of the role of GH in adulthood and the effects of GH replacement in the GH-deficient adult. These studies have led to the recognition of a specific syndrome of GH-deficiency, characterized by symptoms, signs and investigative findings. Adults with long-standing growth hormone deficiency are often overweight, have altered body composition, with reduced lean body mass (LBM), increased fat mass (FM), reduced total body water and reduced bone mass. In addition, there is reduced physical and cardiac performance, altered substrate metabolism and an abnormal lipid profile predisposing to the development of cardiovascular disease. Adults with GH deficiency report reduced psychological well-being and quality of life. These changes may contribute to the morbidity and premature mortality observed in hypopituitary adults on conventional replacement therapy. GH treatment restores LBM, reduces FM, increases total body water and increases bone mass. Following GH therapy, increases are recorded in exercise capacity and protein synthesis, and "favourable" alterations occur in plasma lipids. In addition, psychological well-being and quality of life improve with replacement therapy. GH is well tolerated; adverse effects are largely related to fluid retention and respond to dose adjustment. It is likely that GH replacement will become standard therapy for the hypopituitary adult in the near future. The benefits of GH replacement in the GH-deficient adult have been unequivocally demonstrated in studies lasting up to 3 years. The results of longer term studies are awaited to determine whether these benefits are sustained over a lifetime.
Resumo:
Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.
Resumo:
We estimate the effects of climatic changes, as predicted by six climate models, on lake surface temperatures on a global scale, using the lake surface equilibrium temperature as a proxy. We evaluate interactions between different forcing variables, the sensitivity of lake surface temperatures to these variables, as well as differences between climate zones. Lake surface equilibrium temperatures are predicted to increase by 70 to 85 % of the increase in air temperatures. On average, air temperature is the main driver for changes in lake surface temperatures, and its effect is reduced by ~10 % by changes in other meteorological variables. However, the contribution of these other variables to the variance is ~40 % of that of air temperature, and their effects can be important at specific locations. The warming increases the importance of longwave radiation and evaporation for the lake surface heat balance compared to shortwave radiation and convective heat fluxes. We discuss the consequences of our findings for the design and evaluation of different types of studies on climate change effects on lakes.
Resumo:
We tested a core assumption of the bidirectional model of executive function (EF) (Blair & Ursache, 2011) indicating that EF is dependent on arousal. From a bottom-up perspective the performance on EF tasks is assumed to be curvilinearly related to arousal, with very high or low levels of arousal impairing EF. N = 107 4-and 6-year-olds’ performance on EF tasks was explored as a function of a weak stress manipulation aiming to raise children’s emotional arousal. EF (Stroop, Flanker, Go/no-go, and Backwards Color Recall) was assessed and stress was induced in half of the children by imposing a mild social evaluative threat. Furthermore, children’s temperament was assessed as a potential moderator. We found that stress effects on children’s EF performance were moderated by age and temperament: 4-year-olds with high Inhibitory Control and high Attentional Focusing were negatively affected by the stressor. However, it is unclear whether these effects were mediated by self-reported arousal. Our findings disconfirmed the hypotheses that adverse effects of the stressor are particularly high in children high on emotional reactivity aspects of temperament and low on self-regulatory aspects of temperament. Further, 6-year-olds did not show any stress effects. Results will be discussed within the framework of the Yerkes-Dodson law and with regard to stress manipulations in children.
Resumo:
Enrichment of 13C in SOM with soil depth is related to interacting processes influenced by temperature and precipitation. Our objectives were to derive climate effects on patterns of vertical δ13C values of soil organic matter (SOM) while minimizing the effect of confounding variables. We investigated vertical changes in δ13C values of SOM in 1-cm depth intervals in silvicultural mature beech (Fagus sylvatica L.) forest ecosystems in northern Rhineland-Palatinate across gradients of MAT (7.9 to 9.7 °C mean annual temperature) and MAP (607 to 1085 mm mean annual precipitation) in winter 2011. Forest stands (n = 10) were chosen based on data sets provided by the Rhineland-Palatinate Forest Administration so that variations in these gradients occurred while other environmental factors like physico-chemical soil properties, tree species, stand age, exposition and precipitation (for the temperature gradient) or temperature (for the precipitation gradient) did not differ among study sites. From litter down to the mineral soil at 10 cm depth, soil organic carbon (SOC) content decreased (47.5 ± SE 0.1% to 2.5 ± 0.1%) while the δ13C values increased (− 29.4 ± 0.1‰ to − 26.1 ± 0.1‰). Litter of sites under higher MAP/lower MAT had lower δ13C values which was in line with literature data on climate driven plant physiological process. To compare the dimension of the vertical 13C enrichment, δ13C values were regressed linearly against log-transformed carbon contents yielding absolute values of these slopes (beta). Beta values ranged between 0.6 and 4.5 (range of r from − 0.7 to − 1.0; p < 0.01). Due to an assumed decay continuum and similar variations of δ13C values in litter and in 10 cm depth, we conclude that effects on isotope composition in the Oi layer continue vertically and therefore, δ13C values in litter do not solely control beta values. Beta values decreased with increasing MAT (r = − 0.83; p < 0.05). Reduced soil moisture and therefore both, reduced microbial activity and reduced downward transport of microbial cycled DOM (=13C enriched) might be responsible for less pronounced δ13C depth profiles in case of high temperatures. Greater C:N ratios (lower degradability) of the litter under higher temperatures likely contributed to these depth trends. Beta values increased with increasing MAP (r = 0.73; p < 0.05). We found decreasing C:N ratios in the mineral soil that possibly indicates higher decomposition under higher precipitation. Exclusion of the organic layers from linear regressions indicated a stronger impact of MAP on the development of δ13C depth profiles. Our results confirm temperature and precipitation effects on δ13C depth profiles and indicate stronger 13C enrichment under lower MAT/higher MAP. Therefore, time series of vertical δ13C depth profiles might provide insights into climate change effects.
Resumo:
Orthodontic tooth movement requires external orthodontic forces to be converted to cellular signals that result in the coordinated removal of bone on one side of the tooth (compression side) by osteoclasts, and the formation of new bone by osteoblasts on the other side (tension side). The length of orthodontic treatment can take several years, leading to problems of caries, periodontal disease, root resorption, and patient dissatisfaction. It appears that the velocity of tooth movement is largely dependent on the rate of alveolar bone remodeling. Pharmacological approaches to increase the rate of tooth movement are limited due to patient discomfort, severe root resorption, and drug-induced side effects. Recently, externally applied, cyclical, low magnitude forces (CLMF) have been shown to cause an increase in the bone mineral density of long bones, and in the growth of craniofacial structures in a variety of animal models. In addition, CLMF is well tolerated by the patient and produces no known adverse effects. However, its application in orthodontic tooth movement has not been specifically determined. Since factors that increase alveolar bone remodeling enhance the rate of orthodontic tooth movement, we hypothesized that externally applied, cyclical, low magnitude forces (CLMF) will increase the rate of orthodontic tooth movement. In order to test this hypothesis we used an in vivo rat orthodontic tooth movement model. Our specific aims were: Specific Aim 1: To develop an in vivo rat model for tooth movement. We developed a tooth movement model based upon two established rodent models (Ren and Yoshimatsu et al, See Figure 1.). The amount of variation of tooth movement in rats exposed to 25-60 g of mesial force activated viii from the first molar to the incisor for 4 weeks was calculated. Specific Aim 2: To determine the frequency dose response of externally applied, cyclical, low magnitude forces (CLMF) for maximal tooth movement and osteoclast numbers. Our working hypothesis for this aim was that the amount of tooth movement would be dose dependent on the frequency of application of the CLMF. In order to test this working hypothesis, we varied the frequency of the CLMF from 30, 60, 100, and 200 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks, and measured the amount of tooth movement. We also looked at the number of osteoclasts for the different frequencies; we hypothesized an increase in osteoclasts for the dose respnse of different frequencies. Specific Aim 3: To determine the effects of externally applied, cyclical, low magnitude forces (CLMF) on PDL proliferation. Our working hypothesis for this aim was that PDL proliferation would increase with CLMF. In order to test this hypothesis we compared CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) performed on the left side (experimental side), to the non-CLMF side, on the right (control side). This was an experimental study with 24 rats in total. The experimental group contained fifteen (15) rats in total, and they all received a spring plus a different frequency of CLMF. Three (3) received a spring and CLMF at 30 Hz, 0.4N for 10 minutes. Six (6) received a spring and CLMF at 60 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 100 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 200 Hz, 0.4N for 10 minutes. The control group contained six (6) rats, and received only a spring. An additional ix three (3) rats received CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) only, with no spring, and were used only for histological purposes. Rats were subjected to the application of orthodontic force from their maxillary left first molar to their left central incisor. In addition some of the rats received externally applied, cyclical, low magnitude force (CLMF) on their maxillary left first molar. micro-CT was used to measure the amount of orthodontic tooth movement. The distance between the maxillary first and second molars, at the most mesial point of the second molar and the most distal point of the first molar (1M-2M distance) were used to evaluate the distance of tooth movement. Immunohistochemistry was performed with TRAP staining and BrdU quantification. Externally applied, cyclical, low magnitude forces (CLMF) do appear to have an effect on the rate, while not significant, of orthodontic tooth movement in rats. It appears that lower CLMF decreases the rate of tooth movement, while higher CLMF increases the rate of tooth movement. Future studies with larger sample sizes are needed to clarify this issue. CLMF does not appear to affect the proliferation in PDL cells, and has no effect on the number of osteoclasts.
Resumo:
Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, -2.3°C) and Anchorage Island (67°S, -3.8°C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island. The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 +/- 2 x 10**3 ind./m**2) to Signy (3.3 +/- 8.0 x 10**4 ind./m**2) and Anchorage Island (3.1 +/- 0.82 x 10**5 ind./m**2). The abundance of Acari did not show a latitudinal trend. Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata. Overall, our data suggest that the consequences of an experimental temperature increase of 1-2°C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.