297 resultados para ciprofloxacin
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%), followed by cephalotin (69.2%), sulfamethoxazole + trimethoprim (61.5%), tetracycline (61.5%), streptomycin (53.8%), ciprofloxacin (53.8%), ampicillin (46.2%), gentamicin (30.8%) and chloramphenicol (23.1%). No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A) had only one strain, which belonged to a serotype with zoonotic potential (O6:H31) and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D), whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E.
Resumo:
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy. Cancer Res; 72(23); 6200-8. (C) 2012 AACR.
Resumo:
Animal production is one of the most expressive sectors of Brazilian agro-economy. Although antibiotics are routinely used in this activity, their occurrence, fate, and potential impacts to the local environment are largely unknown. This research evaluated sorption-desorption and occurrence of four commonly used fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) in poultry litter and soil samples from Sao Paulo State, Brazil. The sorption-desorption studies involved batch equilibration technique and followed the OECD guideline for pesticides. All compounds were analyzed by HPLC, using fluorescence detector. Fluoroquinolones' sorption potential to the poultry litters (K-d <= 65 L kg(-1)) was lower than to the soil (K-d similar to 40,000 L kg(-1)), but was always high (>= 69% of applied amount) indicating a higher specificity of fluoroquinolones interaction with soils. The addition of poultry litter (5%) to the soil had not affected sorption or desorption of these compounds. Desorption was negligible in the soil (<= 0.5% of sorbed amount), but not in the poultry litters (up to 42% of sorbed amount). Fluoroquinolones' mean concentrations found in the poultry litters (1.37 to 6.68 mg kg(-1)) and soils (22.93 mu g kg(-1)) were compatible to those found elsewhere (Austria, China, and Turkey). Enrofloxacin was the most often detected compound (30% of poultry litters and 27% of soils) at the highest mean concentrations (6.68 mg kg(-1) for poultry litters and 22.93 mu g kg(-1) for soils). These results show that antibiotics are routinely used in poultry production and might represent one potential source of pollution to the environment that has been largely ignored and should be further investigated in Brazil. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We describe an outbreak investigation of Pantoea agglomerans bacteraemia associated with anticoagulant citrate-dextrose 46% (ACD) solution prepared in-house. A healthy man presented with septic shock during plasmapheresis for granulocyte donation. The solution used for priming and blood samples were sent for culture. Identification of the isolate to species level was performed by gyrB sequencing. Typing was performed by pulsed-field gel electrophoresis (PFGE). In total, eight cases were identified during a three-week period. P. agglomerans was also cultured from six ACD solution bags. Isolates from patients and ACD bags were identical by PFGE. All isolates were susceptible to ampicillin, cephazolin, gentamicin, ciprofloxacin, cefepime and imipenem. (C) 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The purpose of this study was to evaluate the antimicrobial activity of calcium hydroxide, 2% chlorhexidine gel, and triantibiotic paste (ie, metronidazole, minocycline, and ciprofloxacin) by using an intraorally infected dentin biofilm model. Methods: Forty bovine dentin specimens were infected intraorally using a removable orthodontic device in order to induce the biofilm colonization of the dentin. Then, the samples were treated with the medications for 7 days. Saline solution was used as the control. Two evaluations were performed: immediately after the elimination of the medication and after incubation in brain-heart infusion medium for 24 hours. The Live/Dead technique (Invitrogen, Eugene, OR) and a confocal microscope were used to obtain the percentage of live cells. Nonparametric statistical tests were performed to show differences in the percentage of live cells among the groups (P < .05). Results: Calcium hydroxide and 2% chlorhexidine gel did not show statistical differences in the immediate evaluation. However, after application of the brain-heart infusion medium for 24 hours, 2% gel chlorhexidine showed a statistically lesser percentage of live cells in comparison with calcium hydroxide. The triantibiotic paste significantly showed a lower percentage of live cells in comparison with the 2% chlorhexidine gel and calcium hydroxide groups in the immediate and secondary (after 24 hours) evaluations. Conclusions: The triantibiotic paste was most effective at killing the bacteria in the biofilms on the intraorally infected dentin model in comparison with 2% chlorhexidine gel and calcium hydroxide
Resumo:
Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%), followed by cephalotin (69.2%), sulfamethoxazole + trimethoprim (61.5%), tetracycline (61.5%), streptomycin (53.8%), ciprofloxacin (53.8%), ampicillin (46.2%), gentamicin (30.8%) and chloramphenicol (23.1%). No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A) had only one strain, which belonged to a serotype with zoonotic potential (O6:H31) and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D), whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E.
Resumo:
Mutations in the quinolone resistance-determining regions (QRDR) in chromosomal gyrA and parC genes and fluoroquinolone susceptibility profiles were investigated in quinolone-resistant Enterobacteriaceae isolated from community and hospitalized patientsin the Brazilian Southeast region. A total of 112 nalidixic acid-resistant enterobacterial isolates collected from 2000 to 2005 were investigated for mutations in the topoisomerases genes gyrA and parC by amplifying and sequencing the QRDR regions. Susceptibility to fluoroquinolones was tested by the agar dilution method. Amongst the 112 enterobacterial isolates, 81 (72.3%) were resistant to ciprofloxacin and 5 (4.5%) showed reduced susceptibility. Twenty-six (23.2%) were susceptible to ciprofloxacin. Several alterations were detected in gyrA and parC genes. Escherichia coli isolates (47.7%) showed double mutations in the gyrA gene and a single one in the parC gene. Two unusual aminoacid substitutions are reported, an Asp87-Asn in a Citrobacter freundii isolate with reduced susceptibility to fluoroquinolones and a Glu84-Ala in one E. coli isolate.Only a parC gene mutation was found in fluoroquinolone-susceptible Enterobacter aerogenes. None of the isolates susceptible to ciprofloxacin presented mutations in topoisomerase genes. This comprehensive analysis of QRDRs in gyrA and parC genes, covering commonly isolated Enterobacteriaceae in Brazil is the largest reported up to now.
Resumo:
[EN] An assessment of the concentrations of thirteen different therapeutic pharmaceutical compounds was conducted on water samples obtained from different wastewater treatment plants (WWTPs) using solid phase extraction and high- and ultra-high-performance liquid chromatography with mass spectrometry detection (HPLC-MS/MS and UHPLC-MS/MS), was carried out. The target compounds included ketoprofen and naproxen (anti-inflammatories), bezafibrate (lipid-regulating), carbamazepine (anticonvulsant), metamizole (analgesic), atenolol (?-blocker), paraxanthine (stimulant), fluoxetine (antidepressant), and levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin and sarafloxacin (fluoroquinolone antibiotics). The relative standard deviations obtained in method were below 11%, while the detection and quantification limits were in the range of 0.3 ? 97.4 ng·L-1 and 1.1 ? 324.7 ng·L-1, respectively. The water samples were collected from two different WWTPs located on the island of Gran Canaria in Spain over a period of one year. The first WWTP (denoted as WWTP1) used conventional activated sludge for the treatment of wastewater, while the other plant (WWTP2) employed a membrane bioreactor system for wastewater treatment. Most of the pharmaceutical compounds detected in this study during the sampling periods were found to have concentrations ranging between 0.02 and 34.81 ?g·L-1.