907 resultados para chicken diets
Resumo:
Cuando una bellota golpea la cabeza de Pollo, este piensa que el cielo se está cayendo, así que se apresura a ponerse en camino para decírselo al rey. Por el camino va encontrando a otros animales que se le unen en la búsqueda. Para levantar las solapas de las páginas y descubrir lo que hay debajo, para ayudar a encontrar al Rey antes de que el cielo se caiga.
Resumo:
Un día un pájaro, lanza un grano de trigo sobre la cabeza de Chicken Little que después desaparece en la hierba. Éste pía y dice que va a contarle al rey que ha caído un trozo de cielo. En el camino se encuentra con Turkey Lurkey, Henny Penny, Gossey Lucy y Ducky Dadles. Pero también aparece Foxy Loxy.
Resumo:
Breeding seabirds are threatened by human activities that affect nesting and foraging habitat. In Canada, one of the seabirds most at risk of extirpation is the Roseate Tern, Sterna dougallii. Although critical nesting habitat has been identified for the Roseate Tern in Canada, its foraging locations and the diet of its chicks are unknown. Therefore, our goal was to determine the foraging locations and diet of chicks of Roseate Tern breeding on Country Island, Nova Scotia, which is one of Canada's two main breeding colonies. In 2003 and 2004, we radio-tracked the Roseate Tern by plane to locate foraging areas and conducted feeding watches to determine the diet of chicks. Roseate Tern foraged approximately 7 km from the breeding colony over shallow water < 5 m deep. In both years, sand lance, Ammodytes spp., was the most common prey item delivered to chicks, followed by hake, Urophycis spp. Our results are consistent with previous work at colonies in the northeastern United States, suggesting that throughout its range, this species may be restricted in both habitat use and prey selection. The reliance on a specific habitat type and narrow range of prey species makes the Roseate Tern generally susceptible to habitat perturbations and reductions in the availability of prey.
Resumo:
Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.
Resumo:
The objective of this study was to determine the distribution of total selenium (Se) and of the proportion of total Se comprised as the selenized amino acids selenomethionine (SeMet) and selenocysteine (SeCys) within the post mortem tissues of lambs that were fed high dose selenized enriched yeast (SY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty two Texel X Suffolk lambs (6.87 ± 0.23 kg BW) were offered both reconstituted milk replacer and a pelleted diet, both of which had been either supplemented with high SY (6.30 ± 0.18 mg Se/kg DM) or unsupplemented (0.13 ± 0.01 mg Se/kg of DM), depending on treatment designation, for a continuous period of 91 d. At enrollment and 28, 56 and 91 d following enrollment lambs were blood sampled. At the completion of the treatment period, five lambs from each treatment group were euthanased and samples of heart, liver, kidney and skeletal muscle (Longissimus Dorsi and Psoas Major) were retained for Se analysis. The inclusion of high SY increased (P < 0.001) whole blood Se concentration, reaching a maximum mean value of 815.2 ± 19.1 ng Se/mL compared with 217.8 ± 9.1 ng Se/mL in control animals. Tissue total Se concentrations were significantly (P < 0.001) higher in SY supplemented animals than in controls irrespective of tissue type; values were 26, 16, 8 and 3 times higher in skeletal muscle, liver, heart and kidney tissue of HSY lambs when compared to controls. however, the distribution of total Se and the proportions of total Se comprised as either SeMet or SeCys differed between tissue types. Selenocysteine was the predominant selenized amino acid in glandular tissues, such the liver and kidney. irrespective of treatment, although absolute values were markedly higher in HSY lambs. Conversely selenomethionine was the predominat selenized amino acid in cardiac and skeletal muscle (Longissimus Dorsi, and Psoas Major) tissues in HSY animals, although the same trend was not apparent for control lambs in which SeCys was the predominant selenized amino acid. It was concluded that there were increases in both whole blood and tissue total Se concentrations as a result of dietary supplementation with high dose of SY. Furthermore, distribution of total Se and Se species differed between both treatment designation and tissue type.
Resumo:
Simmental × Holstein-Friesian steers were offered four forage diets. These comprised grass silage (G); proportionately 0·67 grass silage, proportionately 0·33 maize silage (GGM); 0·33 grass silage, 0·67 maize silage ( MMG); maize silage ( M) from 424 (s.d. = 11·5) kg to slaughter at a minimum weight of 560 kg. Forages were mixed and offered ad libitum. Steers were offered 2 kg of a concentrate daily, the concentrate being formulated such that all steers had similar crude protein intakes across dietary treatments. A sample of steers was slaughtered at the beginning of the experimental period to allow the calculation of the rate of gain of the carcass and its components. Carcass dissection of a sample of steers allowed the development of a prediction equation of carcass composition based on thoracic limb dissection of all carcasses. Forage dry matter intake and live-weight gain increased linearly as maize silage replaced grass silage in the forage mixture, resulting in improvements in food conversion ratio (all P = 0·001). Killing-out proportion increased with maize silage inclusion ( P < 0·001) but fat and conformation scores did not differ significantly between diets. However, increasing maize inclusion in the diet resulted in a greater weight ( P = 0·05) and proportion ( P = 0·008) of fat in the carcass, and significant increases in internal fat deposition. The inclusion of maize led to a progressive increase in the daily gains of carcass ( P < 0·001), and significant increases in the daily gains of both fat ( P < 0·001) and lean tissue ( P < 0·001). Fat colour was more yellow in cattle given diets G and GGM than diets MMG and M ( P < 0·001) and colour intensity was lower on diet M than the other three diets ( P < 0·001). There were no significant differences in any aspects of eating quality between diets. Therefore, maize silage has the potential to reduce the time taken for finishing beef animals to achieve slaughter weight with no apparent detrimental effects on subsequent meat quality.
Resumo:
Replacing grass silage with maize silage results in a fundamental change in the ratio of structural to non-structural carbohydrates with commensurate changes in rumen fermentation patterns and nutrient utilisation. This study investigated the effects of feeding four forage mixtures, namely grass silage (G); 67 g/100 g grass silage133 g/100 g maize silage (GGM); 67 g/100 g maize silage133/100 g grass silage (MMG); maize silage (M) to four ruminally and duodenally canulated Holstein Friesian steers. All diets were formulated to be isonitrogenous (22.4 g N/kg DM) using a concentrate mixture. Dietary dry matter (DM) and organic matter (OM) digestibility increased with ascending maize silage inclusion (P,0.1) whereas starch and neutral detergent fibre digestibility declined (P,0.05). Ratio of non-glucogenic to glucogenic precursors in the rumen fluid increased with maize silage inclusion (P,0.01) with a commensurate reduction in rumen pH (P,0.05). Mean circulating concentrations of insulin were greatest and similar in diets MMG and GGM, lower in diet M and lowest in diet G (P,0.01). There were no effects of diet on the mean circulating concentration of growth hormone (GH), or the frequency, amplitude and duration of GH pulses, or the mean circulating concentrations of IGF-1. Increasing levels of DM, OM and starch intakes with the substitution of grass silage with maize silage affected overall digestion, nutrient partitioning and subsequent circulating concentrations of insulin.
Resumo:
Commercially supplied chicken breast muscle was subjected to simultaneous heat and pressure treatments. Treatment conditions ranged from ambient temperature to 70 °C and from 0.1 to 800 MPa, respectively, in various combinations. Texture profile analysis (TPA) of the treated samples was performed to determine changes in muscle hardness. At treatment temperatures up to and including 50 °C, heat and pressure acted synergistically to increase muscle hardness. However, at 60 and 70 °C, hardness decreased following treatments in excess of 200 MPa. TPA was performed on extracted myofibrillar protein gels that after treatment under similar conditions revealed similar effects of heat and pressure. Differential scanning calorimetry analysis of whole muscle samples revealed that at ambient pressure the unfolding of myosin was completed at 60 °C, unlike actin, which completely denatured only above 70 °C. With simultaneous pressure treatment at >200 MPa, myosin and actin unfolded at 20 °C. Unfolding of myosin and actin could be induced in extracted myofibrillar protein with simultaneous treatment at 200 MPa and 40 °C. Electrophoretic analysis indicated high pressure/temperature regimens induced disulfide bonding between myosin chains.
Resumo:
Eight Jersey cows were used in two balanced 4 x 4 Latin Squares to investigate the effects of replacement of dietary starch with non-forage fibre on productivity, diet digestibility and feeding behaviour. Total-mixed rations consisted of maize silage, grass silage and a soyabean meal-based concentrate mixture, each at 250g/kg DM, with the remaining 250g consisting of cracked wheat/soya hulls (SH) in the ratios of 250:0, 167:83; 83:167 and 0:250 g, respectively, for treatments SH0, SH83, SH167 and SH250. Starch concentrations were 302, 248, 193 and 140g/kg DM, and NDF concentrations were 316, 355, 394 and 434g/kg DM, for treatments SHO, SH83, SH167 and SH250, respectively. Total eating time increased (p < 0.05) as SH inclusion increased, but total rumination time was unaffected. Digestibility of DM, organic matter and starch declined (p < 0.01) as SH inclusion increased, whilst digestibility of NDF and ADF increased (p < 0.01). Dry-matter intake tended to decline with increasing SH, whilst bodyweight, milk yield and fat and lactose concentrations were unaffected by treatment. Milk protein concentration decreased (p < 0.01) as SH level increased. Feed conversion efficiency improved (p < 0.05) as SH inclusion rose, but it was not possible to determine whether this was due to the increased fibre levels alone, or the favourable effect on rumen fermentation of decreasing starch levels. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A model of sugarcane digestion was applied to indicate the suitability of various locally available supplements for enhancing milk production of Indian crossbred dairy cattle. Milk production was calculated according to simulated energy, lipogenic, glucogenic and aminogenic substrate availability. The model identified the most limiting substrate for milk production from different sugarcane-based diets. For sugarcane tops/urea fed alone, milk production was most limited by amino acid followed by long chain fatty acid availability. Among the protein-rich oil cake supplements at 100, 200 and 300 g supplement/kg total DM, cottonseed oil cake proved superior with a milk yield of 5.5, 7.3 and 8.3 kg/day, respectively. This was followed by mustard oil cake with 5.1, 6.5 and 7.6 kg/day, respectively. In the case of a protein-rich supplement (fish meal), milk yield was limited to 6.6 kg/day due to a shortage of long chain fatty acids. However, at 300 g of supplementation, energy became limiting, with a milk yield of 6.7 kg/day. Supplementation with rice bran and rice polishings at 100, 200 and 300 g restricted milk yield to 4.3, 4.9 and 5.5 and 4.5, 5.3 and 6.1 kg/day, respectively, and amino acids became the factor limiting milk production. The diet comprising basal sugarcane tops supplemented by leguminous fodder, dry fodder (e.g. rice or wheat straw) and concentrates at levels of 100, 200 and 300 g supplements/kg total diet DM proved to be the most balanced with a milk yield of 5.1, 6.7 and 9.0 kg/day, respectively.
Resumo:
Advancing maize crop maturity is associated with changes in ear-to-stover ratio which may have consequences for the digestibility of the ensiled crop. The apparent digestibility and nitrogen retention of three diets (Early, Mid and Late) containing maize silages made from maize of advancing harvest date [dry matter (DM) contents of the maize silages were 273, 314 and 367 g kg(-1) for the silages in the Early, Mid and Late diets respectively], together with a protein supplement offered in sufficient quantities to make the diets isonitrogenous, were measured in six Holstein-Friesian steers in an incomplete Latin square design with four periods. Dry-matter intake of maize silage tended to be least for the Early diet and greatest for the Medium diet (P=0(.)182). Apparent digestibility of DM and organic matter did not differ between diets. Apparent digestibility of energy was lowest in the Late diet (P = 0(.)057) and the metabolizable energy concentrations of the three silages were calculated as 11(.)0, 11(.)1 and 10(.)6 MJ kg(-1) DM for the Early, Medium and Late diets respectively (P = 0(.)068). No differences were detected between diets in starch digestibility but the number of undamaged grains present in the faeces of animals fed the Late diet was significantly higher than with the Early and Mid diets (P = 0(.)006). The apparent digestibility of neutral-detergent fibre of the diets reduced significantly as silage DM content increased (P = 0(.)012) with a similar trend for the apparent digestibility of acid-detergent fibre (P = 0(.)078). Apparent digestibility of nitrogen (N) was similar for the Early and Mid diets, both being greater than the Late diet (P = 0(.)035). Nitrogen retention did not differ between diets. It was concluded that delaying harvest until the DM content is above 300 g kg(-1) can negatively affect the nutritive value of maize silage in the UK.
Resumo:
Substituting grass silage with maize silage in forage mixtures may result in one forage influencing the nutritive value of another in terms of whole tract nutrient digestibility and N utilisation. This experiment investigated effects of four forage combinations being, grass silage (G); 67 g/100 g grass silage + 33 g/100 g maize silage (GGM); 67 g/100 g maize silage + 33 g/100 g grass silage (MMG); maize silage (M). All diets were formulated to be isonitrogenous (22.4 g N/kg dry matter [DM]) using a concentrate mixture. Ration digestibility and N balance was determined using 7 Holstein Friesian steers (mean body weight 411.0 +/- 120.9 kg) in a cross-over design. Inclusion of maize silage in the diet had a positive linear effect on forage and total DM intake (P = 0.001), and on apparent DM and organic matter digestibility (both P = 0.048). Regardless of the silage ratio used, the metabolisable energy concentration of maize silage was calculated to be higher than that of grass silage (P = 0.058), and linearly related to the relative proportions of the two silages in the forage mixture. Inclusion of maize silage in the diet resulted in a linear decline in the apparent digestibility of starch (P = 0.022), neutral detergent fibre (P < 0.001) and acid detergent fibre (P = 0.003). Nitrogen retention, expressed as amount retained per day or in terms of body weight (g/100 kg) increased linearly with maize inclusion (P = 0.047 and 0.046, respectively). Replacing grass silage with maize silage caused linear responses according to the proportions of each forage in the diet, and that there were no associative effects of combining forages. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch, and decreases in the proportions of structural carbohydrates in the ensiled crop. This experiment investigated the effects of three maize silages of 291 (low), 339 (medium) and 393 (high) g DM per kg fresh weight on the performance of 48 Simmental. Holstein-Friesian cattle. Equal numbers of steers (mean start weight = 503 (s.d. 31.3) kg) and heifers (mean start weight = 378 (s.d. 11.2) kg) were offered individually isonitrogenous diets composed of the three silages plus a protein supplement with minerals once daily until slaughter at the target live weight of 575 and 475 kg for steers and heifers, respectively. Intake was reduced on the low diet (P < 0.01) compared with the other two treatments. Dietary starch intake increased by a total of 1 kg/day between low and medium diets but by only 0.2 kg/day between medium and high diets. Unlike starch intake, total neutral-detergent fibre intake showed no significant difference (P > 0.05) between diets. There were no differences in live-weight gain between treatments but differences (P < 0.05) in food conversion efficiency indicated relative gains of 115, 100 and 102 g gain per kg DM intake for diets low, medium and high, respectively. There were no differences between diets in carcass weights, fat score and overall conformation.