947 resultados para chemical oxygen demand


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The State of São Paulo is responsible for the largest sugar cane production in Brazil, as well as the largest production of ethanol made of this raw material – which is widely used as fuel for automobiles. This utilization began in the 1970’s, with the institution by the Brazilian government of the National Alcohol Program (PRO-ÁLCOOL), as a consequence of the petroleum crisis, rising again five years ago, with the development of flex fuel cars. The obtaining process of ethanol originates residues; amongst them, vinasse is the one that’s generated in the largest amount (an average of 10 to 13 litres/litre of ethanol produced). The disposal of this residue in waters was only forbidden in 1978, but before that, researchers had already been investigating its utilization as raw material. This paper had the objective of accompany the biodegradation of vinasse by evaluating the oxygen comsumption during it until the ultimate Biochemical Oxygen Demand (uBOD), performed in twenty days; another objective was to analyse the biomass production of Saccharomyces cerevisae in this residue. Physical and chemical analyses of the residue were also performed, as well as acute toxicity essays using Daphnia similis and Dugesia tigrina, before and after its biodegradation. The physical and chemical analyses pointed elevated acidness (pH = 3,98), conductivity (8,30 mS/cm) and COD (25.693,43 mg O2/L) and mean quantity of suspended solids (5.246 mg/L). The toxicity essays indicated absence of toxic potential in vinasse after biodegradation for both species. The uBOD degradated until 88,22% of the COD, demonstrating the possibility of biodegradation of most of the residue’s organic load in a relatively short period of time. S. cerevisae caused a 37,03% COD diminution in vinasse, diminished its conductivity and promoted a slight elevation of the pH; it obtained low biomass...(Complete abstract click electronic access below)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benthic oxygen fluxes calculated from in situ microelectrode profiles arc compared with benthic flux chamber O2 uptake measurements on a transect of eight stations across the continental shelf and three stations on the slope of Washington State. Station depths ranged from 40 to 630 m and bottom-water oxygen concentrations were 127-38 µM. The fluxes measured by the two methods were similar on the slope, but on the shelf, the chamber flux exceeded the microelectrode flux by as much as a factor of 3-4. We attribute this difference to pore-water irrigation, a process which apparently accounts for the oxidation of a significant amount of organic C in the continental shelf sediments. Combining our diffusive flux data with other data demonstrates clearly that the bottomwater oxygen concentration must play some significant role in determining the sedimentary oxygen consumption rate. Numerical simulation of the microelectrode 0, profiles suggests that roughly half the diffusive 0, flux must be consumed within - 1 mm of the sediment surface. If this conclusion is correct, then the magnitude of the diffusive flux depends both on the bottom-water oxygen concentration and on the supply rate of labile C to the sediment surf'ace.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Total sediment oxygen consumption rates (TSOC or Jtot), measured during sediment-water incubations, and sediment oxygen microdistributions were studied at 16 stations in the Arctic Ocean (Svalbard area). The oxygen consumption rates ranged between 1.85 and 11.2 mmol m**-2 d**-1, and oxygen penetrated from 5.0 to >59 mm into the investigated sediments. Measured TSOC exceeded the calculated diffusive oxygen fluxes (Jdiff) by 1.1-4.8 times. Diffusive fluxes across the sediment-water interface were calculated using the whole measured microprofiles, rather than the linear oxygen gradient in the top sediment layer. The lack of a significant correlation between found abundances of bioirrigating meiofauna and high Jtot/Jdiff ratios as well as minor discrepancies in measured TSOC between replicate sediment cores, suggest molecular diffusion, not bioirrigation, to be the most important transport mechanism for oxygen across the sediment-water interface and within these sediments. The high ratios of Jtot/Jdiff obtained for some stations were therefore suggested to be caused by topographic factors, i.e. underestimation of the actual sediment surface area when one-dimensional diffusive fluxes were calculated, or sampling artifacts during core recovery from great water depths. Measured TSOC correlated to water depth raised to the -0.4 to -0.5 power (TSOC = water depth**-0.4 to -0.5) for all investigated stations, but they could be divided into two groups representing different geographical areas with different sediment oxygen consumption characteristics. The differences in TSOC between the two areas were suggested to reflect hydrographic factors (such as ice coverage and import/production of reactive particulate organic material) related to the dominating water mass (Atlantic or polar) in each of the two areas. The good correlation between TSOC and water depth**-0.4 to -0.5 rules out any of the stations investigated to be topographic depressions with pronounced enhanced sediment oxygen consumption.