994 resultados para chemical management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction - Occupational exposures are characterized by being complex and associated to co-exposure to several contaminants by different exposure routes. Even if exposure occurs to only a chemical agent, it can have different exposure routes and can result in different health effects. The waste management setting is recognized by the presence of several chemical and biologic agents in the workplaces. Recently, it was reported occupational exposure to Aflatoxin B1 (AFB1) in one Portuguese waste management industry. However, data regarding to fungal burden showed that exposure to other mycotoxins should be expected. Aim of the study - The aim of the present work was to know if workers from this waste management industry were exposed to other mycotoxins besides AFB1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fundamental purpose of fisheries management is to ensure sustainable production over time from fish stocks, preferably through regulatory and enhancement actions that promote economic and social well being of the fishers and industries that depend on the resource. To achieve this purpose, management authorities must design, justify and administer (enforce) a collection of restraints on fishing and fishery-related activities. Productivity and management of the fisheries should be based on the understanding that they are complex and dynamic systems. Physical, chemical and biological components support a community of organisms that is unique to the these systems. All these components are in constant change but mainly dictated by human interference in the water body ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Albert/Mobutu lies along the Zaire-Uganda border in 43/57 per cent ratio in the faulted depression tending south-west to the north east. It is bounded by latitudes 1o0 n to 2o 20’ N and longitudes 30o 20’ to 31o 20’E. It has a width varying from 35 to 45 km (22 to 28 miles) as measured between the scarps at the lake level. It covers an area of 5600km2 and has a maximum depth of 48m. The major inflow is through the Semiliki, an outflow of Lake Edward, Muzizi and Victoria Nile draining lakes Victoria and Kyoga while the Albert Nile is the outflow. The physical, chemical and biological productivity parameters are summarized in Table 1. The scarp is steep but not sheer and there are at least 4 tracks leading down it to villages on the shore and scarp land scarp is a young one, formed as a result of earth movements of the Pleistocene times, and the numerous streams come down headlong down its thousand feet drop, more often than not in falls (Baker, 1954). Sometimes there appears to be a clean fault; and at other places there is the appearrence of step faulting, although this may be of only a superical nature .The escarpment’s composed of rocks belonging to the pre-Cambrian Basement complex of the content; but the floor of the depression is covered with young sedimentary rocks, known as kaiso beds. In their upper part these latter beds contains many pebbles; whilst low down the occurrence fossiliferous beds is sufficiently rare phenomenon in the interior plateau of Africa. The kaiso beds dated as possibly middle Pleistocene in age, are exposed in various flats on the shore, and they presumably extend under the relatively shallow waters of the lake. A feature of the shore is the development of sandpits and the enclosure of lagoons; and these can be observed in various stages of development at kaiso, Tonya, kibiro, Buhuka and above all, at Butiaba. On an island lake over 1100 km (700 miles) from the shores of the Indian Ocean one can thus study some of the shore-line phenomena usually associated with the sea- coast (Worthington, 1929). In the north, from Butiaba onwards, the flats become wider and from a continuous lowland as the lake shore curves away from the straight edge of the escarpment. At a height of just 610m (2000 feet) above sea-level, the rift valley floor at Butiaba has a mean annual temperature of 25.60c (780 f), from which there is virtually no seasonal variation; and and the mean daily range is only 6.50c (130f) (E.Afr. met. Dept.1953). With a mean annual rainfall of not much more than 762mm (309 inches) and only 92 rain days in ayear, again to judge from Butiaba, conditions in the rift valley are semi-arid; and the vegetation cover consists of grasses and scattered drought-resisting trees and bushes. Only near the stream courses does the vegetation thicken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheat occupies a principal place in the diet of humans globally, contributing more to our daily calorie and protein intake than any other crop. For this reason, preventing weed induced yield losses in wheat has high significance for world food sustainability. Herbicides and tillage play an important role in weed control, but their use has often unacceptable consequences for humans and the wider environment. Additionally, the range of herbicides effective on key weeds is dwindling due to the evolution of herbicide resistance. Elevating crop competitiveness against weeds, through a combination of wheat breeding and innovative planting design (planting density, row spacing and orientation), has strong potential to reduce weed-induced yield losses in wheat. The last decade of research has provided a solid foundation for the breeding of weed suppressive wheat cultivars, and continued research in this area should be a focus for the future. In the interim, there is cause for optimism that weeds can be effectively suppressed using existing wheat varieties, through careful cultivar selection and choice of planting design. Further research is required to define the nature of relationships between cultivar traits and competitive planting strategies, across diverse weed flora in multiple countries, sites and seasons. Investment in such innovation promises to produce benefits, not only in terms of sustained wheat yields, but also in terms of human and ecosystem health, through ameliorating chemical and sediment contamination, soil degradation, and CO2 pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harnessing the power of nuclear reactions has brought huge benefits in terms of nuclear energy, medicine and defence as well as risks including the management of nuclear wastes. One of the main issues for radioactive waste management is liquid radioactive waste (LRW). Different methods have been applied to remediate LRW, thereunder ion exchange and adsorption. Comparative studies have demonstrated that Na2Ti2O3SiO4·2H2O titanosilicate sorption materials are the most promising in terms of Cs+ and Sr2+ retention from LRW. Therefore these TiSi materials became the object of this study. The recently developed in Ukraine sol-gel method of synthesizing these materials was chosen among the other reported approaches since it allows obtaining the TiSi materials in the form of particles with size ≥ 4mm. utilizing inexpensive and bulk stable inorganic precursors and yielded the materials with desirable properties by alteration of the comparatively mild synthesis conditions. The main aim of this study was to investigate the physico-chemical properties of sol-gel synthesized titanosilicates for radionuclide uptake from aqueous solutions. The effect of synthesis conditions on the structural and sorption parameters of TiSi xerogels was planned to determine in order to obtain a highly efficient sorption material. The ability of the obtained TiSis to retain Cs+, Sr2+ and other potentially toxic metal cations from the synthetic and real aqueous solutions was intended to assess. To our expectations, abovementioned studies will illustrate the efficiency and profitability of the chosen synthesis approach, synthesis conditions and the obtained materials. X-ray diffraction, low temperature adsorption/desorption surface area analysis, X-ray photoelectron spectroscopy, infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy was used for xerogels characterization. The sorption capability of the synthesized TiSi gels was studied as a function of pH, adsorbent mass, initial concentration of target ion, contact time, temperature, composition and concentration of the background solution. It was found that the applied sol-gel approach yielded materials with a poorly crystalline sodium titanosilicate structure under relatively mild synthesis conditions. The temperature of HTT has the strongest influence on the structure of the materials and consequently was concluded to be the control factor for the preparation of gels with the desired properties. The obtained materials proved to be effective and selective for both Sr2+ and Cs+ decontamination from synthetic and real aqueous solutions like drinking, ground, sea and mine waters, blood plasma and liquid radioactive wastes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper agricultural waste; Canarium schweinfurthii was explored for the sequestering of Fe and Pb ions from wastewater solution after carbonization and chemical treatment at 400oC. Optimum time of 30 and 150 min with percentage removal of 95 and 98% at optimum pH of 2 and 6 was obtained for Fe and Pb ions. Kinetics model followed pseudofirst order as sum of absolute error (EABS) between Qe and Qc greater than that of pseudo second order. Parameters evaluated from isothermal equation (Freundlich and Langmuir) showed that KL and QO for Fe > Pb and R2 for Langmuir> Freundlich. The study reveals the suitability of the adsorbent for sequestering of Fe and Pb ions from industrial wastewater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability assessments were carried out in small-holders? farms in four territories where productive arrangements have been organized for production of minor oleagi- nous crops under the Brazilian biodiesel program. The study aimed at checking local impacts of the biodiesel productive chains at the rural establishment scale, and pro- moting the environmental performance of the selected farms, henceforth proposed as sustainable management demonstration units. Assessments were carried out with the APOIA-NovoRural system, which integrates 62 objective and quantitative indicators re- lated to five sustainability dimensions: i) Landscape Ecology, ii) Environmental Quality (Atmosphere, Water and Soil), iii) Socio-cultural Values, iv) Economic Values and v) Management and Administration. The main results point out that, in general, the eco- logical dimensions of sustainability, that is, the Landscape Ecology and Atmosphere, Water, and Soil quality indicators, show adequate field conditions, seemingly not yet negatively affected by increases in chemical inputs and natural resources use predicted as important potential impacts of the agro-energy sector. The Economic Values indica- tors have been favorably influenced in the studied farms, due to a steadier demand and improved prices for the oleaginous crops. On the other hand, valuable positive conse- quences expected for favoring farmers? market insertion, such as improved Socio-cultural Values and Management & Administration indicators, are still opportunities to be ma-terialized. The Environmental Management Reports issued to the farmers, based on the presented sustainability assessment procedures, offer valuable documentation and com-munication means for consolidating the organizational influence of the local productive arrangements studied. These productive arrangements were shown to be determinant for the selection of crop associations and diversification, as well as for the provision of technical assistance and the stabilization of demand - conditions that promote value aggregation and income improvements, favoring small-holders? insertion in the market. More importantly, these locally organized productive arrangements have been shown to strongly influence the valorization of natural resources and environmental assets, which are fundamental if sustainable rural development is to take place under the emerging agro-energy scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow-out ponds supplied with a high inflow of nutrient-rich water. Prawns were subject to different stocking and harvesting strategies: upper-graded juveniles, lower-graded juveniles, non-graded juveniles + selective harvesting and traditional farming (non-grading juveniles and total harvest only). Dissolved oxygen, afternoon N-ammonia and N-nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1-8.0) waters indicated a non-readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day(-1) and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow-out in ponds subjected to a high inflow of nutrient-rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non-readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient-rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are various methods to analyse waste, which differ from each other according to the level of detail of the compositio. Waste composed by plastic and used for packaging, for example, can be classified by chemical composition of the polymer used for the specific product. At a more basal level, before dividing a waste according to the specific chemical material of which it is composed it is possible and also important to classify it according to the material category. So, if the secondary aim is to consider the particular polymer that constitutes a plastic waste, or what kind of natural polymer composes a specific waste made of wood, the first aim is to classify the product category of the material that makes up the waste, so, if it is wood made, or plastic, or glass made or metal, or organic. There are not specific instruments to make this subdivision, not specific chemical tests, but only a manual recognition of the material that makes up the product or waste. The first steps of this study is a recognition of the materials of which the waste is composed, the second is a the quantification of differentiated and unsorted waste produced in the area under study, the third is a mass balance of the portions of waste sent for recovery in order to obtain information on quantities that can be effectively recovered and ready for new life cycle as raw material; the fourth and last step is an environmental assessment that provides information on the environmental cost of the recovery process. This process scheme is applied to various specific kinds of waste from separate collection generated in a specific area with the aim to find a model analysis appliable to other portions of territory in order to improve knowledge of recovery technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this elaborate, a textile-based Organic Electrochemical Transistor (OECT) was first developed for the determination of uric acid in wound exudate based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which was then coupled to an electrochemically gated textile transistor consisting of a composite of iridium oxide particles and PEDOT:PSS for pH monitoring in wound exudate. In that way a sensor for multiparameter monitoring of wound health status was assembled, including the ability to differentiate between a wet-dry status of the smart bandage by implementing impedance measurements exploiting the OECT architecture. Afterwards, for both wound management as well as generic health status tracking applications, a glass-based calcium sensor was developed employing polymeric ion-selective membranes on a novel architecture inspired by the Wrighton OECT configuration, which was later converted to a Proof-of-Concept textile prototype for wearable applications. Lastly, in collaboration with the King Abdullah University of Science and Technology (KAUST, Thuwal, Saudi Arabia) under the supervision of Prof. Sahika Inal, different types of ion-selective thiophene-based monomers were used to develop ion-selective conductive polymers to detect sodium ion by different methods, involving standard potentiometry and OECT-based approaches. The textile OECTs for uric acid detection performances were optimized by investigating the geometry effect on the instrumental response and the properties of the different textile materials involved in their production, with a special focus on the final application that implies the operativity in flow conditions to simulate the wound environment. The same testing route was followed for the multiparameter sensor and the calcium sensor prototype, with a particular care towards the ion-selective membrane composition and electrode conditioning protocol optimization. The sodium-selective polymer electrosynthesis was optimized in non-aqueous environments and was characterized by means of potentiostatic and potentiodynamic techniques coupled with Quartz Crystal Microbalance and spectrophotometric measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory changes during the storage of coffee beans occur mainly due to lipid oxidation and are responsible for the loss of commercial value. This work aimed to verify how sensory changes of natural coffee and pulped natural coffee are related to the oxidative processes during 15 months of storage. During this period, changes in the content of free fatty acids (1.4-3.8 mg/g oil), TBARS values (8.8-10.2 nmol MDA/g), and carbonyl groups (2.6-3.5 nmol/mg of protein) occurred. The intensity of rested coffee flavour in the coffee brew increased (2.1-6.7) and 5-caffeoylquinic acid concentration decreased (5.2-4.6g/100g). Losses were also observed in seed viability, colour of the beans and cellular structure. All the results of the chemical analyses are coherent with the oxidative process that occurred in the grains during storage. Therefore, oxidation would be also responsible for the loss of cellular structure, seed viability and sensory changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.