950 resultados para characterization and renewable source
Resumo:
In order to verify the influence of class and use and occupation of land on water quality, it was performed the characterization and analyzes of land use and monitoring of seven springs inserted in a watershed located in the rural of Viçosa city - Minas Gerais (MG) state, in Brazil. Through soil analyzes, carried out in five different profiles, it was possible to identify three distinct pedological classes: Argisol, Cambisol and Latosol. Furthermore, the concentrations of Fe, Mn, Cu, Zn, Cr, Cd, Pb and Ni were identified in each of the horizons in the considered profiles. Water samples were collected and analyzed monthly, over eight months, twenty two parameters of water quality. Comparing the results of each survey, it was possible to identify a relation between water quality and land use in the round of the springs, considering color, BOD, DO, E. coli and Mn as the most affected parameters, influenced mainly by soil characteristics and the presence of a large percentage of pasture in the study area.
Resumo:
The influence of physical-chemical characteristics of maize grains and lactic acid concentrations on byproduct yields, generated by conventional wet milling, was studied during steeping, for four maize hybrids and two lactic acid concentrations (0.55 and 1.00%). For physical-chemical characterization, grain dimensions (length, thickness, and width) were determined, as well as mass of 100 grains, percentage of floating grains, volumetric mass, and centesimal composition. Statistical differences were found for percentage of floating grains (2.33 to 24.67%), volumetric mass (0.814 to 0.850 kg.L-1), mass of 100 grains (0.033 to 0.037 kg), water content (11.86 to 12.20%), proteins (8.21 to 9.06%), lipids (3.00 to 4.77%), and ashes (1.07 to 1.26%). There were no relationships of wet milling yields with maize appearance and physical-chemical characteristics. The addition of 1.00% lactic acid did not statistically improve byproduct yields; however, it favored separation of the grain components.
Resumo:
Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the reinforcement of cement-based composites. The residues were treated with wet-dry cycles and evaluated using tensile testing of fibers, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Compatibility with the cement-based matrix was evaluated through the fiber pull-out test and flexural test in composites reinforced with 2 % of sisal residues. The results indicate that the use of treated residue allows the production of composites with good mechanical properties that are superior to the traditional composites reinforced with natural sisal fibers.
Resumo:
ABSTRACT Water and sewage treatment plants (STP and WTP) generate as byproduct a significant amount of sludge with environment harmful elements. Sending to landfills or depositing on the ground or rivers are respectively expensive and dangerous alternatives. In this scenario, the use of this waste in paving processes is a promising alternative for disposal thereof. In this study, we focused on characterizing sludge and evaluating its use in paving, which showed satisfactory results for use in base and sub-base floors.
Resumo:
This work describes the methodology, basic procedures and instrumental employed by the Solar Energy Laboratory at Universidade Federal do Rio Grande do Sul for the determination of current-voltage characteristic curves of photovoltaic modules. According to this methodology, I-V characteristic curves were acquired for several modules under diverse conditions. The main electrical parameters were determined and the temperature and irradiance influence on photovoltaic modules performance was quantified. It was observed that most of the tested modules presented output power values considerably lower than those specified by the manufacturers. The described hardware allows the testing of modules with open-circuit voltage up to 50 V and short-circuit current up to 8 A.
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
This thesis describes work related to the in-depth characterization of the phenolic compounds of silver birch (Betula pendula) inner bark. Phenolic compounds are the most ubiquitous class of plant secondary compounds. The unifying feature of this structurally diverse group is an aromatic ring containing at least one hydroxyl group. Due to the structural diversity, phenolics have various roles in the plant defense against biotic and abiotic stresses. In addition, they can confer several health-promoting properties to humans. Furthermore, the structural diversity of this class of compounds causes challenges for their analysis. The study species in the present work, silver birch, is economically the most important hard wood species in northern Europe. Its inner bark contains a high level of phenolic compounds and it has shown one of the strongest antioxidant activities among 92 Finnish plant materials. The literature review surveys the diversity and organ specific distribution of phenolic compounds in silver birch as well as the proposed ecological functions of phenolic compounds in nature. In addition, the basis for the characterization of phenolics by mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), and circular dichroism spectroscopy (CD) are reviewed. The objective of the experimental work was to extract, purify, characterize, and quantify the inner bark phenolic compounds. Overall 36 compounds were characterized by MS and ultraviolet spectroscopy (UV). 24 compounds were isolated and their structures confirmed by NMR and CD spectroscopy. Five novel natural compounds were identified. Special emphasis was placed on the establishment of a method for the characterization of proanthocyanidins (PAs). Hydrophilic interaction liquid chromatography (HILIC) was utilized because of its high resolution power and predictable elution order of oligomeric and polymeric PAs according to an increasing degree of polymerization. The combination of HILIC and high-resolution MS detection allowed the identification of procyanidin (PC) polymers up to the degree of polymerization of 22. In addition, a series of oligomeric and polymeric PC monoxylosides were observed for the first time in nature. Season and genotype influenced the quantities of the main inner bark phenolics, yet qualitative differences were not observed. However, manual wounding of the inner bark induced the production of ellagitannins (ETs) in the wounded tissues, i.e. callus. Since ETs were not detected in the intact inner bark, this finding may reflect the capacity of silver birch to exploit ellagitannins in its defense.
Resumo:
RENSOL (Regional Energy Solutions) project deals with the use of energy efficiency and renewable energy solutions in Kaliningrad Oblast to tackle climate change. Overall objective of the RENSOL work package 1 is to build awareness and knowledge on solutions for energy efficient buildings and street lightning applications. The project report describes available solutions to improve housing energy efficiency.
Resumo:
This thesis focuses on flavonoids, a subgroup of phenolic compounds produced by plants, and how they affect the herbivorous larvae of lepidopterans and sawflies. The first part of the literature review examines different techniques to analyze the chemical structures of flavonoids and their concentrations in biological samples. These techniques include, for example, ultraviolet-visible spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The second part of the literature review studies how phenolic compounds function in the metabolism of larvae. The harmful oxidation reactions of phenolic compounds in insect guts are also emphasized. In addition to the negative effects, many insect species have evolved the use of phenolic compounds for their own benefit. In the experimental part of the thesis, high concentrations of complex flavonoid oligoglycosides were found in the hemolymph (the circulatory fluid of insects) of birch and pine sawflies. The larvae produced these compounds from simple flavonoid precursors present in the birch leaves and pine needles. Flavonoid glycosides were also found in the cocoon walls of sawflies, which suggested that flavonoids were used in the construction of cocoons. The second part of the experimental work studied the modifications of phenolic compounds in conditions that mimicked the alkaline guts of lepidopteran larvae. It was found that the 24 plant species studied and their individual phenolic compounds had variable capacities to function as oxidative defenses in alkaline conditions. The excrements of lepidopteran and sawfly species were studied to see how different types of phenolics were processed by the larvae. These results suggested that phenolic compounds were oxidized, hydrolyzed, or modified in other ways during their passage through the digestive tract of the larvae.
Resumo:
Water channels or aquaporins (AQPs) have been identified in a large variety of tissues. Nevertheless, their role in the human gastrointestinal tract, where their action is essential for the reabsorption and secretion of water and electrolytes, is still unclear. The purpose of the present study was to investigate the structure and function of water channels expressed in the human colon. A cDNA fragment of about 420 bp with a 98% identity to human AQP3 was amplified from human stomach, small intestine and colon by reverse transcription polymerase chain reaction (RT-PCR) and a transcript of 2.2 kb was expressed more abundantly in colon than in jejunum, ileum and stomach as indicated by Northern blots. Expression of mRNA from the colon of adults and children but not from other gastrointestinal regions in Xenopus oocytes enhanced the osmotic water permeability, and the urea and glycerol transport in a manner sensitive to an antisense AQP3 oligonucleotide, indicating the presence of functional AQP3. Immunocytochemistry and immunofluorescence studies in human colon revealed that the AQP3 protein is restricted to the villus epithelial cells. The immunostaining within these cells was more intense in the apical than in the basolateral membranes. The presence of AQP3 in villus epithelial cells suggests that AQP3 is implicated in water absorption across human colonic surface cells.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.
Resumo:
Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56% lipids and 9 and 7% carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.
Resumo:
The role of chloride in the stabilization of the deoxy conformation of hemoglobin (Hb), the low oxygen affinity state, has been studied in order to identify the nature of this binding. Previous studies have shown that arginines 141α could be involved in the binding of this ion to the protein. Thus, des-Arg Hb, human hemoglobin modified by removal of the α-chain C-terminal residue Arg141α, is a possible model for studies of these interactions. The loss of Arg141α and all the salt bridges in which it participates is associated with subtle structural perturbations of the α-chains, which include an increase in the conformational flexibility and further shift to the oxy state, increasing oxygen affinity. Thus, this Hb has been the target of many studies of structural and functional behavior along with medical applications. In the present study, we describe the biochemical characterization of des-Arg Hb by electrophoresis, high-performance liquid chromatography and mass spectroscopy. The effects of chloride binding on the oxygen affinity and on the cooperativity to des-Arg Hb and to native human hemoglobin, HbA, were measured and compared. We confirm that des-Arg Hb presents high oxygen affinity and low cooperativity in the presence of bound chloride and show that the binding of chloride to des-Arg does not change its functional characteristics as observed with HbA. These results indicate that Arg141α may be involved in the chloride effect on Hb oxygenation. Moreover, they show that these residues contribute to lower Hb oxygen affinity to a level compatible with its biological function.
Resumo:
Gastric cancer is the fourth most frequent type of cancer and the second cause of cancer mortality worldwide. The genetic alterations described so far for gastric carcinomas include amplifications and mutations of the c-ERBB2, KRAS, MET, TP53, and c-MYC genes. Chromosomal instability described for gastric cancer includes gains and losses of whole chromosomes or parts of them and these events might lead to oncogene overexpression, showing the need for a better understanding of the cytogenetic aspects of this neoplasia. Very few gastric carcinoma cell lines have been isolated. The establishment and characterization of the biological properties of gastric cancer cell lines is a powerful tool to gather information about the evolution of this malignancy, and also to test new therapeutic approaches. The present study characterized cytogenetically PG-100, the first commercially available gastric cancer cell line derived from a Brazilian patient who had a gastric adenocarcinoma, using GTG banding and fluorescent in situ hybridization to determine MYC amplification. Twenty metaphases were karyotyped; 19 (95%) of them presented chromosome 8 trisomy, where the MYC gene is located, and 17 (85%) presented a deletion in the 17p region, where the TP53 is located. These are common findings for gastric carcinomas, validating PG100 as an experimental model for this neoplasia. Eighty-six percent of 200 cells analyzed by fluorescent in situ hybridization presented MYC overexpression. Less frequent findings, such as 5p deletions and trisomy 16, open new perspectives for the study of this tumor.
Resumo:
We evaluated the outcome of 227 patients with acute myeloid leukemia during three decades (period 1 - 1980’s, N = 89; period 2 - 1990’s, N = 73; period 3 - 2000’s, N = 65) at a single institution. Major differences between the three groups included a higher median age, rates of multilineage dysplasia and co-morbidities, and a lower rate of clinical manifestations of advanced leukemia in recent years. The proportion of patients who received induction remission chemotherapy was 66, 75, and 85% for periods 1, 2, and 3, respectively (P = 0.04). The median survival was 40, 77, and 112 days, and the 5-year overall survival was 7, 13, and 22%, respectively (P = 0.01). The median disease-free survival was 266, 278, and 386 days (P = 0.049). Survival expectation for patients with acute myeloid leukemia has substantially improved during this 30-year period, due to a combination of lower tumor burden and a more efficient use of chemotherapy and supportive care.