963 resultados para cell cycle protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IkappaB kinase (IKK) complex controls processes such as inflammation, immune responses, cell survival and the proliferation of both normal and tumor cells. By activating NFkappaB, the IKK complex contributes to G1/S transition and first evidence has been presented that IKKalpha also regulates entry into mitosis. At what stage IKK is required and whether IKK also contributes to progression through mitosis and cytokinesis, however, has not yet been determined. In this study, we use BMS-345541, a potent allosteric small molecule inhibitor of IKK, to inhibit IKK specifically during G2 and during mitosis. We show that BMS-345541 affects several mitotic cell cycle transitions, including mitotic entry, prometaphase to anaphase progression and cytokinesis. Adding BMS-345541 to the cells released from arrest in S-phase blocked the activation of Aurora A, B and C, Cdk1 activation and histone H3 phosphorylation. Additionally, treatment of the mitotic cells with BMS-345541 resulted in precocious cyclin B1 and securin degradation, defective chromosome separation and improper cytokinesis. BMS-345541 was also found to override the spindle checkpoint in nocodazole-arrested cells. In vitro kinase assays using BMS-345541 indicate that these effects are not primarily due to a direct inhibitory effect of BMS-345541 on mitotic kinases such as Cdk1, Aurora A or B, Plk1 or NEK2. This study points towards a new potential role of IKK in cell cycle progression. Since deregulation of the cell cycle is one of the hallmarks of tumor formation and progression, the newly discovered level of BMS-345541 function could be useful for cell cycle control studies and may provide valuable clues for the design of future therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholangiocarcinoma is the second most common malignant tumor of the liver. We analyzed, immunohistochemically, the significance of cell cycle- and apoptosis-related markers in 128 cholangiocarcinomas (42 intrahepatic, 70 extrahepatic, and 16 gallbladder carcinomas) combined in a tissue microarray. Follow-up was available for 57 patients (44.5%). In comparison with normal tissue (29 specimens), cholangiocarcinomas expressed significantly more frequently p53, bcl-2, bax, and COX-2 (P.05 <). Intrahepatic tumors were significantly more frequently bcl-2+ and p16+, whereas extrahepatic tumors were more often p53+ (P < .05). Loss of p16 expression was associated with reduced survival of patients. Our data show that p53, bcl-2, bax, and COX-2 have an important role in the pathogenesis of cholangiocarcinomas. The differential expression of p16, bcl-2, and p53 between intrahepatic and extrahepatic tumors demonstrates that there are location-related differences in the phenotype and the genetic profiles of these tumors. Moreover, p16 was identified as an important prognostic marker in cholangiocarcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the two major constituents of eukaryotic cell membranes. In the protist Trypanosoma brucei, PE and PC are synthesized exclusively via the Kennedy pathway. To determine which organelles or processes are most sensitive to a disruption of normal phospholipid levels, the cellular consequences of a decrease in the levels of PE or PC, respectively, were studied following RNAi knock-down of four enzymes of the Kennedy pathway. RNAi against ethanolamine-phosphate cytidylyltransferase (ET) disrupted mitochondrial morphology and ultrastructure. Electron microscopy revealed alterations of inner mitochondrial membrane morphology, defined by a loss of disk-like cristae. Despite the structural changes in the mitochondrion, the cells maintained oxidative phosphorylation. Our results indicate that the inner membrane morphology of T. brucei procyclic forms is highly sensitive to a decrease of PE levels, as a change in the ultrastructure of the mitochondrion is the earliest phenotype observed after RNAi knock-down of ET. Interference with phospholipid synthesis also impaired normal cell-cycle progression. ET RNAi led to an accumulation of multinucleate cells. In contrast, RNAi against choline-/ethanolamine phosphotransferase, which affected PC as well as PE levels, caused a cell division phenotype characterized by non-division of the nucleus and production of zoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examined cellular mechanisms involved in the production and secretion of human (gamma)IFN. The hypothesis of this investigation was that (gamma)IFN is an export glycoprotein whose synthesis in human T lymphocytes is dependent on membrane stimulation, polypeptide synthesis in the rough endoplasmic reticulum, packaging in the Golgi complex, and release from the cell by exocytosis.^ The model system for this examination utilized T lymphocytes from normal donors and patients with chronic lymphocytic leukemia (CLL) induced in vitro with the tumor promoter, phorbol 12-myristate 13-acetate (PMA) and the lectin, phytohemagglutinin (PHA) to produce (gamma)IFN. This study reconfirmed the ability of PMA and PHA to synergistically induce (gamma)IFN production in normal T lymphocytes, as measured by viral inhibition assays and radio-immunoassays for (gamma)IFN. The leukemic T cells were demonstrated to produce (gamma)IFN in response to treatment with PHA. PMA treatment also induced (gamma)IFN production in the leukemic T cells, which was much greater than that observed in similarly treated normal T cells. In these same cells, however, combined treatment of the agents was shown to be ineffective at inducing (gamma)IFN production beyond the levels stimulated by the individual agents. In addition, the present study reiterated the synergistic effect of PMA/PHA on the stimulation of growth kinetics in normal T cells. The cell cycle of the leukemic T cells was also responsive to treatment with the agents, particularly with PMA treatment. A number of morphological alterations were attributed to PMA treatment including the acquisition of an elongated configuration, nuclear folds, and large cytoplasmic vacuoles. Many of the effects were observed to be reversible with dilution of the agents, and reversion to this state occurred more rapidly in the leukemic T cells. Most importantly, utilization of a thin section immuno-colloidal gold labelling technique for electron microscopy provided, for the first time, direct evidence of the cellular mechanism of (gamma)IFN production and secretion. The results of this latter study support the idea that (gamma)IFN is produced in the rough endoplasmic reticulum, transferred to the Golgi complex for accumulation and packaging, and released from the T cells by exocytosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.