920 resultados para causal inference
Reação à Bipolaris maydis, agente causal da mancha foliar, em híbridos apomíticos de Panicum maximum
Resumo:
A mancha foliar, causada por Bipolaris maydis, é a principal doença de Panicum maximum. A seleção de genótipos resistentes é a melhor estratégia para o controle desta doença. Com o objetivo de identificar fontes de resistência de P. maximum à mancha foliar, 92 híbridos apomíticos, originários de cruzamentos das cultivares Tanzânia-1 e Mombaça, e outros três genótipos sexuais foram testados. Em blocos casualizados, com oito repetições cada, inocularam-se plantas com 30 dias de idade e, após 12 dias, a severidade da doença foi avaliada. Foram verificadas diferenças significativas (P<0,05), de genótipos entre e dentro das progênies, com relação a resistência à mancha foliar. Identificaram-se híbridos com resistência à doença, com destaque para os híbridos MS81, A109, B109, B89 e A4.
Resumo:
Fodor ha argumentado a favor de un par de tesis que pueden caracterizarse como constituyendo un dilema: Por un lado, si adoptamos una teoría funcional para los conceptos explicamos semánticamente los casos Frege pero caemos en el holismo semántico. Por otro lado, si adoptamos una teoría causal/informacional evitamos el holismo pero no explicamos los casos Frege semánticamente. Fodor (por ej, 1994, 1998 y 2008) intenta evitar la segunda parte del dilema argumentando que los casos de Frege pueden tener una explicación sintáctica y no semántica. En este trabajo intentaré ofrecer una salida alternativa al dilema fodoriano. Propondré una explicación semántica de los casos Frege que incorpora tanto elementos de una teoría causal como de una de rol funcional. Afirmaré que el contenido cognitivo o estrecho de un concepto (el tipo de contenido aparentemente exigido por los casos Frege) es el conjunto de contenidos causales/informacionales de las representaciones que figuran en su rol funcional. Considero que individuar a las representaciones en los roles por medio de sus contenidos causales permite evitar el holismo (evitando el proceso de ramsificación típicamente empleado para individuar a los roles) y que identificar el contenido cognitivo con contenidos causales/informacionales de las representaciones en los roles permite evitar el referencialismo de las propuestas causales (podemos distinguir sentido de referencia en términos causales).
Resumo:
Commercial broiler flocks from a farm located in the State of São Paulo, Brazil, presented diarrhea, depression, increased mortality and poor weight gain. Upon post-mortem examination, classical signs of Inclusion Body Hepatitis/Hydropericardium Syndrome (IBH/HPS) were observed, including enlarged pale yellow-colored livers and straw-colored liquid in the pericardial sac. In addition, gross lesions were also observed in the kidneys, pancreas, thymus, intestines and gallbladder. Samples of these organs were analyzed by PCR for the detection of the hexon gene of the Fowl Adenovirus (FAdVs) Group I. The results were positive for both flocks (A and B) assayed by PCR. The macroscopic lesions associated with the detection of FAdV Group I by PCR in several of these affected organs allowed for the identification of IBH/HPS. In fact, this is the first report in Brazil of IBH/HPS in broilers, which identifies FAdVs group I as a causal agent of the disease. These findings may contribute to the worldwide epidemiology of the adenovirus-mediated hepatitis/hydropericardium syndrome.
Resumo:
The future of privacy in the information age is a highly debated topic. In particular, new and emerging technologies such as ICTs and cognitive technologies are seen as threats to privacy. This thesis explores images of the future of privacy among non-experts within the time frame from the present until the year 2050. The aims of the study are to conceptualise privacy as a social and dynamic phenomenon, to understand how privacy is conceptualised among citizens and to analyse ideal-typical images of the future of privacy using the causal layered analysis method. The theoretical background of the thesis combines critical futures studies and critical realism, and the empirical material is drawn from three focus group sessions held in spring 2012 as part of the PRACTIS project. From a critical realist perspective, privacy is conceptualised as a social institution which creates and maintains boundaries between normative circles and preserves the social freedom of individuals. Privacy changes when actors with particular interests engage in technology-enabled practices which challenge current privacy norms. The thesis adopts a position of technological realism as opposed to determinism or neutralism. In the empirical part, the focus group participants are divided into four clusters based on differences in privacy conceptions and perceived threats and solutions. The clusters are fundamentalists, pragmatists, individualists and collectivists. Correspondingly, four ideal-typical images of the future are composed: ‘drift to low privacy’, ‘continuity and benign evolution’, ‘privatised privacy and an uncertain future’, and ‘responsible future or moral decline’. The images are analysed using the four layers of causal layered analysis: litany, system, worldview and myth. Each image has its strengths and weaknesses. The individualistic images tend to be fatalistic in character while the collectivistic images are somewhat utopian. In addition, the images have two common weaknesses: lack of recognition of ongoing developments and simplistic conceptions of privacy based on a dichotomy between the individual and society. The thesis argues for a dialectical understanding of futures as present images of the future and as outcomes of real processes and mechanisms. The first steps in promoting desirable futures are the awareness of privacy as a social institution, the awareness of current images of the future, including their assumptions and weaknesses, and an attitude of responsibility where futures are seen as the consequences of present choices.
Resumo:
Servicios registrales
Resumo:
This thesis explores the debate and issues regarding the status of visual ;,iferellces in the optical writings of Rene Descartes, George Berkeley and James 1. Gibson. It gathers arguments from across their works and synthesizes an account of visual depthperception that accurately reflects the larger, metaphysical implications of their philosophical theories. Chapters 1 and 2 address the Cartesian and Berkelean theories of depth-perception, respectively. For Descartes and Berkeley the debate can be put in the following way: How is it possible that we experience objects as appearing outside of us, at various distances, if objects appear inside of us, in the representations of the individual's mind? Thus, the Descartes-Berkeley component of the debate takes place exclusively within a representationalist setting. Representational theories of depthperception are rooted in the scientific discovery that objects project a merely twodimensional patchwork of forms on the retina. I call this the "flat image" problem. This poses the problem of depth in terms of a difference between two- and three-dimensional orders (i.e., a gap to be bridged by one inferential procedure or another). Chapter 3 addresses Gibson's ecological response to the debate. Gibson argues that the perceiver cannot be flattened out into a passive, two-dimensional sensory surface. Perception is possible precisely because the body and the environment already have depth. Accordingly, the problem cannot be reduced to a gap between two- and threedimensional givens, a gap crossed with a projective geometry. The crucial difference is not one of a dimensional degree. Chapter 3 explores this theme and attempts to excavate the empirical and philosophical suppositions that lead Descartes and Berkeley to their respective theories of indirect perception. Gibson argues that the notion of visual inference, which is necessary to substantiate representational theories of indirect perception, is highly problematic. To elucidate this point, the thesis steps into the representationalist tradition, in order to show that problems that arise within it demand a tum toward Gibson's information-based doctrine of ecological specificity (which is to say, the theory of direct perception). Chapter 3 concludes with a careful examination of Gibsonian affordallces as the sole objects of direct perceptual experience. The final section provides an account of affordances that locates the moving, perceiving body at the heart of the experience of depth; an experience which emerges in the dynamical structures that cross the body and the world.
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
UANL
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
We study the problem of measuring the uncertainty of CGE (or RBC)-type model simulations associated with parameter uncertainty. We describe two approaches for building confidence sets on model endogenous variables. The first one uses a standard Wald-type statistic. The second approach assumes that a confidence set (sampling or Bayesian) is available for the free parameters, from which confidence sets are derived by a projection technique. The latter has two advantages: first, confidence set validity is not affected by model nonlinearities; second, we can easily build simultaneous confidence intervals for an unlimited number of variables. We study conditions under which these confidence sets take the form of intervals and show they can be implemented using standard methods for solving CGE models. We present an application to a CGE model of the Moroccan economy to study the effects of policy-induced increases of transfers from Moroccan expatriates.
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.