979 resultados para carpal bone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds for bone tissue engineering should be designed to optimize cell migration, enhance new bone formation and give mechanical support. In the present study, we used polycaprolactone-tricalciumphosphate (PCL/TCP) scaffolds with two different fibre lay down patterns which were coated with hydroxyapatite and gelatine as an approach for optimizing bone regeneration in a critical sized calvarial defect. After 12 weeks bone regeneration was quantified using microCT analysis, biomechanical testing and histological evaluation. Notably, the experimental groups containing coated scaffolds showed lower bone formation and lower biomechanical properties within the defect compared to the uncoated scaffolds. Surprisingly, the different lay down pattern of the fibres resulted in different bone formation and biomechanical properties; namely 0/60/120° scaffolds revealed lower bone formation and biomechanical properties compared to the 0/90° scaffolds in all the experimental groups. The different architecture of the scaffold fibres may have an effect on nutrition supply as well as the attachment of the newly formed matrix to the scaffold. Therefore, future bone regeneration strategies utilising scaffolds should consider scaffold architecture as an important factor during the scaffold optimisation stages in order to move closer to a clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of hypoxia-mimicking bone tissue engineering scaffolds is of great importance in stimulating angiogenesis for bone regeneration. Dimethyloxallyl glycine (DMOG) is a cell-permeable, competitive inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression. The aim of this study was to develop hypoxia-mimicking scaffolds by delivering DMOG in mesoporous bioactive glass (MBG) scaffolds and to investigate whether the delivery of DMOG could induce a hypoxic microenvironment for human bone marrow stromal cells (hBMSC). MBG scaffolds with varied mesoporous structures (e.g. surface area and mesopore volume) were prepared by controlling the contents of mesopore-template agent. The composition, large-pore microstructure and mesoporous properties of MBG scaffolds were characterized. The effect of mesoporous properties on the loading and release of DMOG in MBG scaffolds was investigated. The effects of DMOG delivery on the cell morphology, cell viability, HIF-1α stabilization, vascular endothelial growth factor (VEGF) secretion and bone-related gene expression (alkaline phosphatase, ALP; osteocalcin, OCN; and osteopontin, OPN) of hBMSC in MBG scaffolds were systematically investigated. The results showed that the loading and release of DMOG in MBG scaffolds can be efficiently controlled by regulating their mesoporous properties via the addition of different contents of mesopore-template agent. DMOG delivery in MBG scaffolds had no cytotoxic effect on the viability of hBMSC. DMOG delivery significantly induced HIF-1α stabilization, VEGF secretion and bone-related gene expression of hBMSC in MBG scaffolds in which DMOG counteracted the effect of HIF-PH and stabilized HIF-1α expression under normoxic condition. Furthermore, it was found that MBG scaffolds with slow DMOG release significantly enhanced the expression of bone-related genes more than those with instant DMOG release. The results suggest that the controllable delivery of DMOG in MBG scaffolds can mimic a hypoxic microenvironment, which not only improves the angiogenic capacity of hBMSC, but also enhances their osteogenic differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is about the use of different cells for bone tissue engineering. The cells were used in combination with a novel biomaterial in a large tibial bone defects in a sheep model. Furthermore this study developed a novel cell delivery procedure for bone tissue engineering. This novel procedure of cell delivery could overcome the current problems of cell-based tissue engineering and serve as a baseline for the translation of novel concepts into clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite Element modelling of bone fracture fixation systems allows computational investigation of the deformation response of the bone to load. Once validated, these models can be easily adapted to explore changes in design or configuration of a fixator. The deformation of the tissue within the fracture gap determines its healing and is often summarised as the stiffness of the construct. FE models capable of reproducing this behaviour would provide valuable insight into the healing potential of different fixation systems. Current model validation techniques lack depth in 6D load and deformation measurements. Other aspects of the FE model creation such as the definition of interfaces between components have also not been explored. This project investigated the mechanical testing and FE modelling of a bone– plate construct for the determination of stiffness. In depth 6D measurement and analysis of the generated forces, moments and movements showed large out of plane behaviours which had not previously been characterised. Stiffness calculated from the interfragmentary movement was found to be an unsuitable summary parameter as the error propagation is too large. Current FE modelling techniques were applied in compression and torsion mimicking the experimental setup. Compressive stiffness was well replicated, though torsional stiffness was not. The out of plane behaviours prevalent in the experimental work were not replicated in the model. The interfaces between the components were investigated experimentally and through modification to the FE model. Incorporation of the interface modelling techniques into the full construct models had no effect in compression but did act to reduce torsional stiffness bringing it closer to that of the experiment. The interface definitions had no effect on out of plane behaviours, which were still not replicated. Neither current nor novel FE modelling techniques were able to replicate the out of plane behaviours evident in the experimental work. New techniques for modelling loads and boundary conditions need to be developed to mimic the effects of the entire experimental system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a study using mechanical testing techniques combined with advanced computational methods to examine the mechanics of bone. It contributes novel observations and analysis of how bones fail at the microscopic level, which will be valuable in furthering our understanding and the treatment of bone damage in health and disease, including osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we fabricate and characterise bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilising additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young’s modulus compared to PCL scaffolds at similar porosity (~75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ±3.8%, 12.1 ±1% and 1.6 ±1% of its original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralisation when compared to PCL scaffolds. However, as indicated by ALP activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffold shows potential as a next generation bone scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseo-integration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the non-grafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, finite element analyses are usually done by means of commercial software tools. Accuracy of analysis and computational time are two important factors in efficiency of these tools. This paper studies the effective parameters in computational time and accuracy of finite element analyses performed by ANSYS and provides the guidelines for the users of this software whenever they us this software for study on deformation of orthopedic bone plates or study on similar cases. It is not a fundamental scientific study and only shares the findings of the authors about structural analysis by means of ANSYS workbench. It gives an idea to the readers about improving the performance of the software and avoiding the traps. The solutions provided in this paper are not the only possible solutions of the problems and in similar cases there are other solutions which are not given in this paper. The parameters of solution method, material model, geometric model, mesh configuration, number of the analysis steps, program controlled parameters and computer settings are discussed through thoroughly in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture healing is a complicated coupling of many processes. Yet despite the apparent complexity, fracture repair is usually effective. There is, however, no comprehensive mathematical model addressing the multiple interactions of cells, cytokines and oxygen that includes extra-cellular matrix production and that results in the formation of the early stage soft callus. This thesis develops a one dimensional continuum transport model in the context of early fracture healing. Although fracture healing is a complex interplay of many local factors, critical components are identified and used to construct an hypothesis about regulation of the evolution of early callus formation. Multiple cell lines, cellular differentiation, oxygen levels and cytokine concentrations are examined as factors affecting this model of early bone repair. The model presumes diffusive and chemotactic cell migration mechanisms. It is proposed that the initial signalling regime and oxygen availability arising as consequences of bone fracture, are sufficient to determine the quantity and quality of early soft callus formation. Readily available software and purpose written algorithms have been used to obtain numerical solutions representative of various initial conditions. These numerical distributions of cellular populations reflect available histology obtained from murine osteotomies. The behaviour of the numerical system in response to differing initial conditions can be described by alternative in vivo healing pathways. An experimental basis, as illustrated in murine fracture histology, has been utilised to validate the mathematical model outcomes. The model developed in this thesis has potential for future extension, to incorporate processes leading to woven bone deposition, while maintaining the characteristics that regulate early callus formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune reactions play important roles in determining the in vivo fate of bone substitute materials, either in new bone formation or inflammatory fibrous tissue encapsulation. The paradigm for the development of bone substitute materials has been shifted from inert to immunomodulatory materials, emphasizing the importance of immune cells in the material evaluation. Macrophages, the major effector cells in the immune reaction to implants, are indispensable for osteogenesis and their heterogeneity and plasticity render macrophages a primer target for immune system modulation. However, there are very few reports about the effects of macrophages on biomaterial-regulated osteogenesis. In this study, we used b-tricalcium phosphate (b-TCP) as a model biomaterial to investigate the role of macrophages on the material stimulated osteogenesis. The macrophage phenotype switched to M2 extreme in response to b-TCP extracts, which was related to the activation of calcium-sensing receptor (CaSR) pathway. Bone morphogenetic protein 2 (BMP2) was also significantly upregulated by the b-TCP stimulation, indicating that macrophage may participate in the b-TCP stimulated osteogenesis. Interestingly, when macrophageconditioned b-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis. These findings provided valuable insights into the mechanism of material-stimulated osteogenesis, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute materials.