923 resultados para boundary integral equation method
Resumo:
In this paper, we present an algorithm for full-wave electromagnetic analysis of nanoplasmonic structures. We use the three-dimensional Method of Moments to solve the electric field integral equation. The computational algorithm is developed in the language C. As examples of application of the code, the problems of scattering from a nanosphere and a rectangular nanorod are analyzed. The calculated characteristics are the near field distribution and the spectral response of these nanoparticles. The convergence of the method for different discretization sizes is also discussed.
Resumo:
[EN]This article presents the analysis of planar mi- crostrip structures using the electric-field integral equation. The structures are divided into irregular rectangular subdomains. Besides its describes the delta-gap voltage excitation mode to resolve the equations systems with the method of the moments.
Resumo:
In this thesis, we present our work about some generalisations of ideas, techniques and physical interpretations typical for integrable models to one of the most outstanding advances in theoretical physics of nowadays: the AdS/CFT correspondences. We have undertaken the problem of testing this conjectured duality under various points of view, but with a clear starting point - the integrability - and with a clear ambitious task in mind: to study the finite-size effects in the energy spectrum of certain string solutions on a side and in the anomalous dimensions of the gauge theory on the other. Of course, the final desire woul be the exact comparison between these two faces of the gauge/string duality. In few words, the original part of this work consists in application of well known integrability technologies, in large parte borrowed by the study of relativistic (1+1)-dimensional integrable quantum field theories, to the highly non-relativisic and much complicated case of the thoeries involved in the recent conjectures of AdS5/CFT4 and AdS4/CFT3 corrspondences. In details, exploiting the spin chain nature of the dilatation operator of N = 4 Super-Yang-Mills theory, we concentrated our attention on one of the most important sector, namely the SL(2) sector - which is also very intersting for the QCD understanding - by formulating a new type of nonlinear integral equation (NLIE) based on a previously guessed asymptotic Bethe Ansatz. The solutions of this Bethe Ansatz are characterised by the length L of the correspondent spin chain and by the number s of its excitations. A NLIE allows one, at least in principle, to make analytical and numerical calculations for arbitrary values of these parameters. The results have been rather exciting. In the important regime of high Lorentz spin, the NLIE clarifies how it reduces to a linear integral equations which governs the subleading order in s, o(s0). This also holds in the regime with L ! 1, L/ ln s finite (long operators case). This region of parameters has been particularly investigated in literature especially because of an intriguing limit into the O(6) sigma model defined on the string side. One of the most powerful methods to keep under control the finite-size spectrum of an integrable relativistic theory is the so called thermodynamic Bethe Ansatz (TBA). We proposed a highly non-trivial generalisation of this technique to the non-relativistic case of AdS5/CFT4 and made the first steps in order to determine its full spectrum - of energies for the AdS side, of anomalous dimensions for the CFT one - at any values of the coupling constant and of the size. At the leading order in the size parameter, the calculation of the finite-size corrections is much simpler and does not necessitate the TBA. It consists in deriving for a nonrelativistc case a method, invented for the first time by L¨uscher to compute the finite-size effects on the mass spectrum of relativisic theories. So, we have formulated a new version of this approach to adapt it to the case of recently found classical string solutions on AdS4 × CP3, inside the new conjecture of an AdS4/CFT3 correspondence. Our results in part confirm the string and algebraic curve calculations, in part are completely new and then could be better understood by the rapidly evolving developments of this extremely exciting research field.
Resumo:
Im Mittelpunkt dieser Arbeit steht Beweis der Existenz- und Eindeutigkeit von Quadraturformeln, die für das Qualokationsverfahren geeignet sind. Letzteres ist ein von Sloan, Wendland und Chandler entwickeltes Verfahren zur numerischen Behandlung von Randintegralgleichungen auf glatten Kurven (allgemeiner: periodische Pseudodifferentialgleichungen). Es erreicht die gleichen Konvergenzordnungen wie das Petrov-Galerkin-Verfahren, wenn man durch den Operator bestimmte Quadraturformeln verwendet. Zunächst werden die hier behandelten Pseudodifferentialoperatoren und das Qualokationsverfahren vorgestellt. Anschließend wird eine Theorie zur Existenz und Eindeutigkeit von Quadraturformeln entwickelt. Ein wesentliches Hilfsmittel hierzu ist die hier bewiesene Verallgemeinerung eines Satzes von Nürnberger über die Existenz und Eindeutigkeit von Quadraturformeln mit positiven Gewichten, die exakt für Tschebyscheff-Räume sind. Es wird schließlich gezeigt, dass es stets eindeutig bestimmte Quadraturformeln gibt, welche die in den Arbeiten von Sloan und Wendland formulierten Bedingungen erfüllen. Desweiteren werden 2-Punkt-Quadraturformeln für so genannte einfache Operatoren bestimmt, mit welchen das Qualokationsverfahren mit einem Testraum von stückweise konstanten Funktionen eine höhere Konvergenzordnung hat. Außerdem wird gezeigt, dass es für nicht-einfache Operatoren im Allgemeinen keine Quadraturformel gibt, mit der die Konvergenzordnung höher als beim Petrov-Galerkin-Verfahren ist. Das letzte Kapitel beinhaltet schließlich numerische Tests mit Operatoren mit konstanten und variablen Koeffizienten, welche die theoretischen Ergebnisse der vorangehenden Kapitel bestätigen.
Resumo:
Assuming that the heat capacity of a body is negligible outside certain inclusions the heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect these interfaces from thermal measurements on the surface of the body. We deduce an equivalent variational formulation for the parabolic-elliptic problem and give a new proof of the unique solvability based on Lions’s projection lemma. For the case that the heat conductivity is higher inside the inclusions, we develop an adaptation of the factorization method to this time-dependent problem. In particular this shows that the locations of the interfaces are uniquely determined by boundary measurements. The method also yields to a numerical algorithm to recover the inclusions and thus the interfaces. We demonstrate how measurement data can be simulated numerically by a coupling of a finite element method with a boundary element method, and finally we present some numerical results for the inverse problem.
Resumo:
This paper introduces the p-adaptive version of the boundary element method as a natural extension of the homonymous finite element approach. After a brief introduction to adaptive techniques through their finite element formulation in elastostatics, the concepts are cast into the boundary element environment. Thus, the p-adaptive version of boundary integral methods is shown to be a generalization of already well known ideas. In order to show the power of these numerical procedures, the results of two practical analysis using both methods are presented.
Resumo:
Classical spherical gradient index (GRIN) lenses (such as Maxwell Fish Eye lens, Eaton lens, Luneburg lens, etc.) design procedure using the Abel integral equation is reviewed and reorganized. Each lens is fully defined by a function called the angle of flight which describes the ray deflection through the lens. The radial refractive index distribution is obtained by applying a linear integral transformation to the angle of flight. The interest of this formulation is in the linearity of the integral transformation which allows us to derive new solutions from linear combinations of known lenses. Beside the review of the classical GRIN designs, we present a numerical method for GRIN lenses defined by the Abel integral equation with fixed limits, which is an ill-posed problem.
Resumo:
In solid mechanics the weak formulation produces an integral equation ready for a discretization and with less restrictive requiremets than the standard field equations. Fundamentally the weak formulation is a expresion of a green formula. An alternative is to choose another green formula materializing a reciprocity relationship between the basis unknowns and an auxiliary family of functions. The degree of smoothness requiered to practice the discretization is then translated to the auxiliar functions. The subsequent discretization (constant, linear etc.)produces a set of equations on the boundary of the domain. For linear 3-D problems the BIEM appears then as a powerful alternative to FEM, because of the reduction to 2-D thanks to the features previously described.
Resumo:
El diseño de una antena reflectarray bajo la aproximación de periodicidad local requiere la determinación de la matriz de scattering de estructuras multicapa con metalizaciones periódicas para un gran número de geometrías diferentes. Por lo tanto, a la hora de diseñar antenas reflectarray en tiempos de CPU razonables, se necesitan herramientas númericas rápidas y precisas para el análisis de las estructuras periódicas multicapa. En esta tesis se aplica la versión Galerkin del Método de los Momentos (MDM) en el dominio espectral al análisis de las estructuras periódicas multicapa necesarias para el diseño de antenas reflectarray basadas en parches apilados o en dipolos paralelos coplanares. Desgraciadamente, la aplicación de este método numérico involucra el cálculo de series dobles infinitas, y mientras que algunas series convergen muy rápidamente, otras lo hacen muy lentamente. Para aliviar este problema, en esta tesis se propone un novedoso MDM espectral-espacial para el análisis de las estructuras periódicas multicapa, en el cual las series rápidamente convergente se calculan en el dominio espectral, y las series lentamente convergentes se calculan en el dominio espacial mediante una versión mejorada de la formulación de ecuaciones integrales de potenciales mixtos (EIPM) del MDM. Esta versión mejorada se basa en la interpolación eficiente de las funciones de Green multicapa periódicas, y en el cálculo eficiente de las integrales singulares que conducen a los elementos de la matriz del MDM. El novedoso método híbrido espectral-espacial y el tradicional MDM en el dominio espectral se han comparado en el caso de los elementos reflectarray basado en parches apilados. Las simulaciones numéricas han demostrado que el tiempo de CPU requerido por el MDM híbrido es alrededor de unas 60 veces más rápido que el requerido por el tradicional MDM en el dominio espectral para una precisión de dos cifras significativas. El uso combinado de elementos reflectarray con parches apilados y técnicas de optimización de banda ancha ha hecho posible diseñar antenas reflectarray de transmisiónrecepción (Tx-Rx) y polarización dual para aplicaciones de espacio con requisitos muy restrictivos. Desgraciadamente, el nivel de aislamiento entre las polarizaciones ortogonales en antenas DBS (típicamente 30 dB) es demasiado exigente para ser conseguido con las antenas basadas en parches apilados. Además, el uso de elementos reflectarray con parches apilados conlleva procesos de fabricación complejos y costosos. En esta tesis se investigan varias configuraciones de elementos reflectarray basadas en conjuntos de dipolos paralelos con el fin de superar los inconvenientes que presenta el elemento basado en parches apilados. Primeramente, se propone un elemento consistente en dos conjuntos apilados ortogonales de tres dipolos paralelos para aplicaciones de polarización dual. Se ha diseñado, fabricado y medido una antena basada en este elemento, y los resultados obtenidos para la antena indican que tiene unas altas prestaciones en términos de ancho de banda, pérdidas, eficiencia y discriminación contrapolar, además de requerir un proceso de fabricación mucho más sencillo que el de las antenas basadas en tres parches apilados. Desgraciadamente, el elemento basado en dos conjuntos ortogonales de tres dipolos paralelos no proporciona suficientes grados de libertad para diseñar antenas reflectarray de transmisión-recepción (Tx-Rx) de polarización dual para aplicaciones de espacio por medio de técnicas de optimización de banda ancha. Por este motivo, en la tesis se propone un nuevo elemento reflectarray que proporciona los grados de libertad suficientes para cada polarización. El nuevo elemento consiste en dos conjuntos ortogonales de cuatro dipolos paralelos. Cada conjunto contiene tres dipolos coplanares y un dipolo apilado. Para poder acomodar los dos conjuntos de dipolos en una sola celda de la antena reflectarray, el conjunto de dipolos de una polarización está desplazado medio período con respecto al conjunto de dipolos de la otra polarización. Este hecho permite usar solamente dos niveles de metalización para cada elemento de la antena, lo cual simplifica el proceso de fabricación como en el caso del elemento basados en dos conjuntos de tres dipolos paralelos coplanares. Una antena de doble polarización y doble banda (Tx-Rx) basada en el nuevo elemento ha sido diseñada, fabricada y medida. La antena muestra muy buenas presentaciones en las dos bandas de frecuencia con muy bajos niveles de polarización cruzada. Simulaciones numéricas presentadas en la tesis muestran que estos bajos de niveles de polarización cruzada se pueden reducir todavía más si se llevan a cabo pequeñas rotaciones de los dos conjuntos de dipolos asociados a cada polarización. ABSTRACT The design of a reflectarray antenna under the local periodicity assumption requires the determination of the scattering matrix of a multilayered structure with periodic metallizations for quite a large number of different geometries. Therefore, in order to design reflectarray antennas within reasonable CPU times, fast and accurate numerical tools for the analysis of the periodic multilayered structures are required. In this thesis the Galerkin’s version of the Method of Moments (MoM) in the spectral domain is applied to the analysis of the periodic multilayered structures involved in the design of reflectarray antennas made of either stacked patches or coplanar parallel dipoles. Unfortunately, this numerical approach involves the computation of double infinite summations, and whereas some of these summations converge very fast, some others converge very slowly. In order to alleviate this problem, in the thesis a novel hybrid MoM spectral-spatial domain approach is proposed for the analysis of the periodic multilayered structures. In the novel approach, whereas the fast convergent summations are computed in the spectral domain, the slowly convergent summations are computed by means of an enhanced Mixed Potential Integral Equation (MPIE) formulation of the MoM in the spatial domain. This enhanced formulation is based on the efficient interpolation of the multilayered periodic Green’s functions, and on the efficient computation of the singular integrals leading to the MoM matrix entries. The novel hybrid spectral-spatial MoM code and the standard spectral domain MoM code have both been compared in the case of reflectarray elements based on multilayered stacked patches. Numerical simulations have shown that the CPU time required by the hybrid MoM is around 60 times smaller than that required by the standard spectral MoM for an accuracy of two significant figures. The combined use of reflectarray elements based on stacked patches and wideband optimization techniques has made it possible to design dual polarization transmit-receive (Tx-Rx) reflectarrays for space applications with stringent requirements. Unfortunately, the required level of isolation between orthogonal polarizations in DBS antennas (typically 30 dB) is hard to achieve with the configuration of stacked patches. Moreover, the use of reflectarrays based on stacked patches leads to a complex and expensive manufacturing process. In this thesis, we investigate several configurations of reflectarray elements based on sets of parallel dipoles that try to overcome the drawbacks introduced by the element based on stacked patches. First, an element based on two stacked orthogonal sets of three coplanar parallel dipoles is proposed for dual polarization applications. An antenna made of this element has been designed, manufactured and measured, and the results obtained show that the antenna presents a high performance in terms of bandwidth, losses, efficiency and cross-polarization discrimination, while the manufacturing process is cheaper and simpler than that of the antennas made of stacked patches. Unfortunately, the element based on two sets of three coplanar parallel dipoles does not provide enough degrees of freedom to design dual-polarization transmit-receive (Tx-Rx) reflectarray antennas for space applications by means of wideband optimization techniques. For this reason, in the thesis a new reflectarray element is proposed which does provide enough degrees of freedom for each polarization. This new element consists of two orthogonal sets of four parallel dipoles, each set containing three coplanar dipoles and one stacked dipole. In order to accommodate the two sets of dipoles in each reflectarray cell, the set of dipoles for one polarization is shifted half a period from the set of dipoles for the other polarization. This also makes it possible to use only two levels of metallization for the reflectarray element, which simplifies the manufacturing process as in the case of the reflectarray element based on two sets of three parallel dipoles. A dual polarization dual-band (Tx-Rx) reflectarray antenna based on the new element has been designed, manufactured and measured. The antenna shows a very good performance in both Tx and Rx frequency bands with very low levels of cross-polarization. Numerical simulations carried out in the thesis have shown that the low levels of cross-polarization can be even made smaller by means of small rotations of the two sets of dipoles associated to each polarization.
Resumo:
A primary purpose of this research is to design a gradient coil that is planar in construction and can be inserted within existing infrastructure. The proposed wave equation method for the design of gradient coils is novel within the field. it is comprehensively shown how this method can be used to design the planar x-, y-, and z-gradient wire windings to produce the required magnetic fields within a certain domain. The solution for the cylindrical gradient coil set is also elucidated. The wave equation technique is compared with the well-known target held method to gauge the quality of resultant design. In the case of the planar gradient coil design, it is shown that using the new method, a set of compact gradient coils with large field of view can be produced. The final design is considerably smaller in dimension when compared with the design obtained using the target field method, and therefore the manufacturing costs and materials required are somewhat reduced.
Resumo:
An iterative method for the parabolic Cauchy problem in planar domains having a finite number of corners is implemented based on boundary integral equations. At each iteration, mixed well-posed problems are solved for the same parabolic operator. The presence of corner points renders singularities of the solutions to these mixed problems, and this is handled with the use of weight functions together with, in the numerical implementation, mesh grading near the corners. The mixed problems are reformulated in terms of boundary integrals obtained via discretization of the time-derivative to obtain an elliptic system of partial differential equations. To numerically solve these integral equations a Nyström method with super-algebraic convergence order is employed. Numerical results are presented showing the feasibility of the proposed approach. © 2014 IMACS.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30
Resumo:
Mathematics Subject Classification: 44A05, 44A35
Resumo:
Mathematics Subject Classification 2010: 45DB05, 45E05, 78A45.