959 resultados para bone formation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)calcium phosphate (PLGACaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470590, 590850 and 8501200 mu m. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470590 mu m. These results show that PLGACaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (similar to 1000 mu m) and smaller (similar to 500 mu m) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim of this work was to study the new bone tissue formation after bone morphogenetic protein type 2 (rhBMP-2) and P-1 application, using 5 and 10 mu g of each, combined to a material carrier, in critical bone defects. Methods: It was used 70 Wistar rats (male, similar to 250 g) that were divided in 10 groups with seven animals on each. Groups are the following: critical bone defect only, pure monoolein gel, 5 mu g of pure P-1, 5 mu g of pure rhBMP-2, 5 mu g of P-1/monoolein gel, 5 mu g of rhBMP-2/monoolein gel, 10 mu g of pure P-1, 10 mu g of pure rhBMP-2, 10 mu g of P-1/monoolein gel, 10 mu g of rhBMP-2/monoolein gel. Animals were sacrificed after 4 weeks of the surgical procedure and the bone samples were submitted to histological, histomorphometrical, and immunohistochemical evaluations. Results: Animals treated with pure P-1 protein, in both situations with 5 mu g and 10 mu g, had no significant difference (P > 0.05) for new bone formation; other groups treated with 10 mu g were statistically significant (P < 0.05) among themselves and when compared with groups in which it was inserted the monoolein gel or critical bone defect only (P < 0.05). In the group involving the 10 mu g rhBMP-2/monoolein gel association, it was observed an extensive bone formation, even when compared with the same treatment without the gel carrier. Conclusion: Using this experimental animal model, more new bone tissue was found when it was inserted the rhBMP-2, especially when this protein was combined to the vehicle, and this process seems to be dose dependent. Microsc. Res. Tech., 2011.(c) 2011 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-level laser irradiation (LLLI) and recombinant human bone morphogenetic protein type 2 (rhBMP-2) have been used to stimulate bone formation. LLLI stimulates proliferation of osteoblast precursor cells and cell differentiation and rhBMP-2 recruits osteoprogenitor cells to the bone healing area. This in vivo study evaluated the effects of LLLI and rhBMP-2 on the bone healing process in rats. Critical bone defects were created in the parietal bone in 42 animals, and the animals were divided into six treatment groups: (1) laser, (2) 7 mu g of rhBMP-2, (3) laser and 7 mu g of rhBMP-2, (4) 7 mu g of rhBMP-2/monoolein gel, (5) laser and 7 mu g rhBMP-2/monoolein gel, and (6) critical bone defect controls. A gallium-aluminum-arsenide diode laser was used (wavelength 780 nm, output power 60 mW, beam area 0.04 cm(2), irradiation time 80 s, energy density 120 J/cm(2), irradiance 1.5 W/cm(2)). After 15 days, the calvarial tissues were removed for histomorphometric analysis. Group 3 defects showed higher amounts of newly formed bone (37.89%) than the defects of all the other groups (P < 0.05). The amounts of new bone in defects of groups 1 and 4 were not significantly different from each other (24.00% and 24.75%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). The amounts of new bone in the defects of groups 2 and 5 were not significantly different from each other (31.42% and 31.96%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). Group 6 defects had 14.10% new bone formation, and this was significantly different from the amounts in the other groups (P < 0.05). It can be concluded that LLLI administered during surgery effectively accelerated healing of critical bone defects filled with pure rhBMP-2, achieving a better result than LLLI alone or the use of rhBMP-2 alone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: In sites with diminished bone volume, the osseointegration of dental implants can be compromised. Innovative biomaterials have been developed to aid successful osseointegration outcomes. Purpose: The aim of this study was to evaluate the osteogenic potential of angiogenic latex proteins for improved bone formation and osseointegration of dental implants. Materials and Methods: Ten dogs were submitted to bilateral circumferential defects (5.0 x 6.3 mm) in the mandible. Dental implant (3.3 x 10.0 mm, TiUnite MK3 (TM), Nobel Biocare AB, Goteborg, Sweden) was installed in the center of the defects. The gap was filled either with coagulum (Cg), autogenous bone graft (BG), or latex angiogenic proteins pool (LPP). Five animals were sacrificed after 4 weeks and 12 weeks, respectively. Implant stability was evaluated using resonance frequency analysis (Osstell Mentor T, Osstell AB, Goteborg, Sweden), and bone formation was analyzed by histological and histometric analysis. Results: LPP showed bone regeneration similar to BG and Cg at 4 weeks and 12 weeks, respectively (p >= 3.05). Bone formation, osseointegration, and implant stability improved significantly from 4 to 12 weeks (p <= 2.05). Conclusion: Based on methodological limitations of this study, Cg alone delivers higher bone formation in the defect as compared with BG at 12 weeks; compared with Cg and BG, the treatment with LPP exhibits no advantage in terms of osteogenic potential in this experimental model, although overall osseointegration was not affected by the treatments employed in this study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study analyzed the newly formed bone tissue after application of recombinant human BMP-2 (rhBMP-2) and P-1 (extracted from Hevea brasiliensis) proteins, 2 weeks after the creation of a critical bone defect in male Wistar rats treated or not with a low-intensity laser (GaAlAs 780 nm, 60 mW of power, and energy density dose of 30 J/cm2). The animals were divided into two major groups: (1) bone defect plus low-intensity laser treatment and (2) bone defect without laser irradiation. The following subgroups were also analyzed: (a) 5 mu g of pure rhBMP-2; (b) 5 mu g of pure P-1 fraction; (c) 5 mu g of rhBMP-2/monoolein gel; (d) 5 mu g of P-1 fraction/monoolein gel; (e) pure monoolein gel. Comparisons of the groups receiving laser treatment with those that did not receive laser irradiation show differences in the areas of new bone tissue. The group treated with 5 mu g of rhBMP-2 and laser irradiation was not significantly different (P >0.05) than the nonirradiated group that received the same treatment. The irradiated, rhBMP-2/monoolein gel treatment group showed a lower area of bone formation than the nonirradiated, rhBMP-2/gel monoolein treatment group (P < 0.001). The area of new bone tissue in the other nonirradiated and irradiated groups was not significantly different (P > 0.05). Furthermore, the group that received the 5 mu g of rhBMP-2 application showed the greatest bone formation. We conclude that the laser treatment did not interfere with the area of new bone tissue growth and that the greatest stimulus for bone formation involved application of the rhBMP-2 protein. Microsc. Res. Tech. 2011. (c) 2011 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate, histometrically, the bone healing of the molar extraction socket just after cigarette smoke inhalation (CSI). Forty male Wistar rats were randomly assigned to a test group (animals exposed to CSI, starting 3 days before teeth extraction and maintained until sacrifice; n=20) and a control group (animals never exposed to CSI; n=20). Second mandibular molars were bilaterally extracted and the animals (n=5/group/period) were sacrificed at 3, 7, 10 and 14 days after surgery. Digital images were analyzed according to the following histometric parameters: osteoid tissue (OT), remaining area (RA), mineralized tissue (MT) and non-mineralized tissue (NMT) in the molar socket. Intergroup analysis showed no significant differences at day 3 (p>0.05) for all parameters. On the 7th day, CSI affected negatively (p<0.05) bone formation with respect to NMT and RA (MT: 36%, NMT: 53%, RA: 12%; and MT: 39%, NMT: 29%, RA: 32%, for the control and test groups, respectively). In contrast, no statistically significant differences (p>0.05) were found at days 10 and 14. It may be concluded that CSI may affect socket healing from the early events involved in the healing process, which may be critical for the amount and quality of new-bone formation in smokers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

LRP4, member of the LDLR family, is a multifunctional membrane-bound receptor that is expressed in various tissues. The expression of LRP4 by osteoblasts, its novel interaction with Wnt-signaling inhibitors Dkk1 and SOST, and the lower levels of activated beta-catenin in different bone locations described here, adds another player to the long list of established factors that modulate canonical Wnt-signaling in bone. By demonstrating that in addition to Wise, LRP4 is able to interact with two additional important modulators of Wnt- and BMP-signaling, our perspective of the complexity of the integration of BMP and Wnt-signaling pathways on the osteoblast surface has expanded further. Nevertheless the recently described association of both the SOST and LRP4 genes with BMD in humans, together with our findings suggest that LRP4 plays a physiologically important role in the skeletal development and bone metabolism not only in rodents, but in humans as well. The efficiency with which LRP4 binds both SOST and Dkk1, presumably at the osteoblastic surface, LRP4 may act as a sink and competes with LRP5/6 for the binding of these Wnt antagonists, which then are no longer available for suppression of the signal through the LRP5/6 axis. rnApoE, a 299 amino acid glycoprotein, is a crucial regulator in the uptake of triglyceride, phospholipids, cholesteryl esters, and cholesterol into cells. ApoE has been linked to osteoporosis, and such a role is further strengthened by the present of a high bone mass phenotype in ApoE null mice. Until recently, the effects of respective ApoE isoforms E2, E3, and E4, and their impact on bone metabolism, have been unclear. Here we report that respective human ApoE knockin mice display diverse effects on bone metabolism. ApoE2 mice show decreased trabecular bone volume per total volume in femoral bone and lumbar spine in comparison to ApoE3 and E4 animals. In this context, urinary bone resorption marker DPD is increased in these animals, which is accompanied by a low ratio of osteoclastogenesis markers OPG/RANKL. Interestingly, serum bone formation markers ALP and OCN are diminished in ApoE4 mice. In contrast to this finding, ApoE2 mice show the lowest bone formation of all groups in vivo. These findings cannot be explained by the low receptor-affinity of ApoE2 and subsequent decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin. Thus, other crucial pathways relevant for bone metabolism, e. g. Wnt/beta-catenin-signaling pathways, must be, compared to the ApoE3/4 isoforms, more affected by the ApoE2 isoform.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought to be the mechanosensors of bone and have been shown to orchestrate bone formation and resorption. Oxygen-deprived osteocytes seem undergo apoptosis and actively stimulate osteoclasts. Hypoxia and oxidative stress increase 150-kDa oxygen-regulated protein (ORP 150) expression in different cell types. It is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. It well known that ORP 150 plays an important role in the cellular adaptation to hypoxia, as anti-apoptotic factor, and seems to be involved in osteocytes differentiations. The aims of the present study are 1) to determine the cellular and molecular response of the osteocytes at two different conditions of oxygen deprivation, 1% and 5% of O2 compared to the atmospheric oxygen concentration at several time points. 2) To clarify the role of hypoxic osteocytes in bone homeostasis through the detection of releasing of soluble factors (RANKL, OPG, PGE2 and Sclerostin). 3) To detect the activation of osteoclast and osteoblast induced by condition media collected from hypoxic and normoxic osteocytes. The data obtained in this study shows that hypoxia compromises the viability of osteocytes and induces apoptosis. Unlike in other cells types, ORP 150 in MLO-Y4 does not seem to be regulated early during hypoxia. The release of soluble factors and the evaluation of osteoclast and osteoblast activation shows that osteocytes, grown under severe oxygen deprivation, play a role in the regulation of both bone resorption and bone formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For the successful integration of bone tissue engineering constructs into patients, an adequate supply with oxygen and nutrients is critical. Therefore, prevascularisation of bone tissue engineering constructs is desirable for bone formation, remodelling and regeneration. Co-culture systems, consisting of human endothelial cells and primary osteoblasts (pOB) as well as osteosarcoma cell lines, represent a promising method for studying the mechanisms involved in the vascularisation of constructs in bone tissue en- gineering and could provide new insights into the molecular and cellular mechanisms that control essential processes during angiogenesis. The present study demonstrated the im- portant components of co-culture systems with a focus on bone tissue replacement and the angiogenic effects of pOB and osteosarcoma cell lines on human endothelial cells. Furthermore, the studies emphasised an overall approach for analysis of signal molecules that are involved in the angiogenic activation of human endothelial cells by the regulation of VEGF-related pathways at the transcriptional and translational levels. The osteosarcoma cell lines Cal-72, MG-63 and SaOS-2, as well as pOB from several donors, differed in their angiogenesis-inducing potential in 2-D and 3-D co-culture systems. SaOS-2 cells appeared to have a high osteogenic differentiation level with no detectable angiogenesis-inducing potential in co-culture with human endothelial cells. The angiogenic potential of the osteoblast-like cells is mainly correlated with the upregulation of essential angiogenic growth factors, such as VEGF, bFGF and HGF and the downregulation of the angiogenesis inhibitor, endostatin. However, other factors involved in angiogenic regulation were found to differ between SaOS-2 cells, compared to Cal-72 and MG-63. The present study focuses on VEGF pathway-effecting genes as key players in the regulation of angiogenesis. The levels of VEGF and VEGF-effecting genes, such as TGF-α and TIMP-2 are down-regulated in SaOS-2 cells. In contrast, direct regulators of VEGF, such as IL6, IL8 and TNF are strongly upregulated, which indicates disruptions in growth factor regulating pathways in SaOS-2 cells. Potential pathways, which could be involved include MEK, PI3K, MAPK, STAT3, AKT or ERK. Additional treatment of co-cultures with single growth factors did not accelerate or improve the angiogenesis-inducing potential of SaOS-2 cells. Knowledge of the detailed molecular mechanisms involved in angiogenesis control will hopefully allow improved approaches to be developed for prevascularisation of bone tissue engineering constructs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: The aim of the present study was to histologically evaluate and compare a new prototype collagen type I/III-containing equine- (EB) and a bovine- (BB) derived cancellous bone block in a dog model. MATERIALS AND METHODS: Four standardized box-shaped defects were bilaterally created at the buccal aspect of the alveolar ridge in the lower jaws of five beagle dogs and randomly allocated to either EB or BB. Each experimental site was covered by a native (non-crosslinked) collagen membrane and left to heal in a submerged position for 12 weeks. Dissected blocks were processed for semi-/and quantitative analyses. RESULTS: Both groups had no adverse clinical or histopathological events (i.e. inflammatory/foreign body reactions). BB specimens revealed no signs of biodegradation and were commonly embedded in a fibrous connective tissue. New bone formation and bony graft integration were minimal. In contrast, EB specimens were characterized by a significantly increased cell (i.e. osteoclasts and multinucleated giant cells)-mediated degradation of the graft material (P<0.001). The amount and extent of bone ingrowth was consistently higher in all EB specimens, but failed to reach statistical significance in comparison with the BB group (P>0.05). CONCLUSIONS: It was concluded that the application of EB may not be associated with an improved bone formation than BB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6(-/-)) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. On the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6(-/-) mice receiving a normal (approximately 1%) or low (approximately 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or aging mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6(+/+) and Trpv6(-/-) mice (-35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6(-/-) mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation and/or mineralization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To evaluate morphologically and morphometrically the sequential healing and osseointegration events at moderately rough implant surfaces with and without chemical modification. Particularly the role of bone debris in initiating bone formation was emphasized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Autogenous bone grafts obtained by different harvesting techniques behave differently during the process of graft consolidation; the underlying reasons are however not fully understood. One theory is that harvesting techniques have an impact on the number and activity of the transplanted cells which contribute to the process of graft consolidation. Materials and Methods: To test this assumption, porcine bone grafts were harvested with four different surgical procedures: bone mill, piezosurgery, bone drilling (bone slurry), and bone scraper. After determining cell viability, the release of molecules affecting bone formation and resorption was assessed by reverse transcription polymerase chain reaction and immunoassay. The mitogenic and osteogenic activity of the conditioned media was evaluated in a bioassay with isolated bone cells. Results: Cell viability and the release of molecules affecting bone formation were higher in samples harvested by bone mill and bone scraper when compared with samples prepared by bone drilling and piezosurgery. The harvesting procedure also affected gene expression, for example, bone mill and bone scraper samples revealed significantly higher expression of growth factors such as bone morphogenetic protein-2 and vascular endothelial growth factor compared with the two other modalities. Receptor activator of nuclear factor kappa B ligand expression was lowest in bone scraper samples. Conclusion: These data can provide a scientific basis to better understand the impact of harvesting techniques on the number and activity of transplanted cells, which might contribute to the therapeutic outcome of the augmentation procedure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases.