999 resultados para black hole physics
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Clínica.
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Clínica.
Resumo:
The dynamics and geometry of the material inflowing and outflowing close to the supermassive black hole in active galactic nuclei are still uncertain. X-rays are the most suitable way to study the AGN innermost regions because of the Fe Kα emission line, a proxy of accretion, and Fe absorption lines produced by outflows. Winds are typically classified as Warm Absorbers (slow and mildly ionized) and Ultra Fast Outflows (fast and highly ionized). Transient Obscurers -optically thick winds that produce strong spectral hardening in X-rays, lasting from days to months- have been observed recently. Emission and absorption features vary on time-scales from hours to years, probing phenomena at different distances from the SMBH. In this work, we use time-resolved spectral analysis to investigate the accretion and ejection flows, to characterize them individually and search for correlations. We analyzed XMM-Newtomn data of a set of the brightest Seyfert 1 galaxies that went through an obscuration event: NGC 3783, NGC 3227, NGC 5548, and NGC 985. Our aim is to search for emission/absorption lines in short-duration spectra (∼ 10ks), to explore regions as close as the SMBH as the statistics allows for, and possibly catch transient phenomena. First we run a blind search to detect emission/absorption features, then we analyze their evolution with Residual Maps: we visualize simultaneously positive and negative residuals from the continuum in the time-energy plane, looking for patterns and relative time-scales. In NGC 3783 we were able to ascribe variations of the Fe Kα emission line to absorptions at the same energy due to clumps in the obscurer, whose presence is detected at >3σ, and to determine the size of the clumps. In NGC 3227 we detected a wind at ∼ 0.2c at ∼ 2σ, briefly appearing during an obscuration event.
Resumo:
Dynamical models of stellar systems represent a powerful tool to study their internal structure and dynamics, to interpret the observed morphological and kinematical fields, and also to support numerical simulations of their evolution. We present a method especially designed to build axisymmetric Jeans models of galaxies, assumed as stationary and collisionless stellar systems. The aim is the development of a rigorous and flexible modelling procedure of multicomponent galaxies, composed of different stellar and dark matter distributions, and a central supermassive black hole. The stellar components, in particular, are intended to represent different galaxy structures, such as discs, bulges, halos, and can then have different structural (density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio) properties. The theoretical framework supporting the modelling procedure is presented, with the introduction of a suitable nomenclature, and its numerical implementation is discussed, with particular reference to the numerical code JASMINE2, developed for this purpose. We propose an approach for efficiently scaling the contributions in mass, luminosity, and rotational support, of the different matter components, allowing for fast and flexible explorations of the model parameter space. We also offer different methods of the computation of the gravitational potentials associated of the density components, especially convenient for their easier numerical tractability. A few galaxy models are studied, showing internal, and projected, structural and dynamical properties of multicomponent galaxies, with a focus on axisymmetric early-type galaxies with complex kinematical morphologies. The application of galaxy models to the study of initial conditions for hydro-dynamical and $N$-body simulations of galaxy evolution is also addressed, allowing in particular to investigate the large number of interesting combinations of the parameters which determine the structure and dynamics of complex multicomponent stellar systems.
Resumo:
Globular clusters (GCs) are traditionally described as simple quasi-relaxed non-rotating stellar systems, characterized by spherical symmetry and isotropy in velocity space. However, recent studies have shown deviations from isotropic velocity distributions and significant internal rotation in many GCs, suggesting that their internal structure and kinematics are more complex than previously thought. The aim of this thesis is to investigate the internal kinematics of Galactic Globular Clusters (GGCs) as part of the Multi-Instrument Kinematic Survey (MIKiS), which exploits the capabilities of different ESO-VLT spectrographs to obtain comprehensive velocity dispersion (VD) and rotation profiles of GGCs. Moreover, this thesis has the particular goal of unraveling the kinematics of GC cores, which are still largely unexplored, by taking advantage of the exceptional spatial resolution of the adaptive-optics assisted integral-field spectrograph MUSE/NFM. The thesis presents a thorough kinematic study of three GGCs NGC 1904, NGC 6440, and NGC 6569. By combining the data sets acquired with four different spectrographs, we obtained the radial velocity (RV) of more than 1000 individual stars in each cluster, sampling from the innermost to the outermost regions. This allowed us to obtain the entire VD profile of each cluster and exclude the presence of an intermediate-mass black hole in the core of NGC 1904, at odds with previous findings obtained from integrated-light spectra. The studies also revealed signatures of internal rotation in each of the GCs studied. These results, supported by those of N-body simulations, prove that GCs were born with a significant initial rotation that they gradually lost through internal two-body relaxation and angular momentum loss carried away by escaping stars. Furthermore, we derived the structural parameters of NGC 6440 and NGC 6569, obtaining a comprehensive overview of the internal kinematics and structure of these GCs, which is necessary to properly reconstruct the evolutionary history of these systems.
Resumo:
Understanding how Active Galactic Nuclei (AGN) shape galaxy evolution is a key challenge of modern astronomy. In the framework where black hole (BH) and galaxy growth are linked, AGN feedback must be tackled both at its “causes” (e.g. AGN-driven winds) and its “effects” (alteration of the gas reservoir in AGN hosts). The most informative cosmic time is z~1-3, at the peak of AGN activity and galaxy buildup, the so-called cosmic noon. The aim of this thesis is to provide new insights regarding some key questions that still remain open in this research field: i) What are the properties of AGN-driven sub-pc scale winds at z>1? ii) Are AGN-driven winds effective in influencing the life of galaxies? iii) Do AGN impact directly on star formation (SF) and gas content of their hosts? I first address AGN feedback as “caught in the act” by studying ultra-fast outflows (UFOs), X-ray AGN-driven winds, in gravitationally lensed quasars. I build the first statistically robust sample of high-z AGN, not preselected based on AGN-driven winds. I derive a first estimate of the high-z UFO detection fraction and measure the UFO duty cycle of a single high-z quasar for the first time. I also address the “effects” of AGN feedback on the life of host galaxies. If AGN influence galaxy growth, then they will reasonably impact the molecular gas reservoir first, and SF as a consequence. Through a comparative study of the molecular gas content in cosmic-noon AGN hosts and matched non-active galaxies (i.e., galaxies not hosting an AGN), we find that the host galaxies of more regular AGN (not selected to be the most luminous) are generally similar to non-active galaxies. However, we report on the possibility of a luminosity effect regulating the efficiency by which AGN might impact on galaxy growth.
Resumo:
Radio galaxies (RGs) are extremely relevant in addressing important unknowns concerning the interaction among black hole accretion, radio jets, and the environment. In the classical scheme, their accretion rate and ejection of relativistic jets are directly linked: efficient accretion (HERG) is associated with powerful edge-brightened jets (FRIIs); inefficient accretion (LERG) is associated with weak edge-darkened jets (FRIs). The observation of RGs with an inefficient engine associated with edge-brightened radio emission (FRII-LERGs) broke this scheme. FRII-LERGs constitute a suitable population to explore how accretion and ejection are linked and evaluate the environment's role in shaping jets. To this aim, we performed a multiwavelength study of different RGs catalogs spanning from Jy to mJy flux densities. At first, we investigated the X-ray properties of a sample of 51 FRIIs belonging to the 3CR catalog at z<0.3. Two hypotheses were invoked to explain FRII-LERGs behavior: evolution from classical FRIIs; the role of the environment. Next, we explored the mJy sky by studying the optical-radio properties of hundreds of RGs at z<0.15 (Best & Heckman 2012 sample). FRII-LERGs appear more similar to the old FRI-LERGs than to the young FRII-HERGs. These results point towards an evolutive scenario, however, nuclear time scale changes, star population aging, and kpc-Mpc radio structure modification do not agree. The role of the Mpc environment was then investigated. The Wen et al. 2015 galaxy clusters sample, built exploiting the SDSS survey, allowed us to explore the habitat of 7219 RGs at z<0.3. Most RGs are found to live in outside clusters. For these sources, differences among RG classes are still present. Thus, the environment is not the key parameter, and the possibility of intrinsic differences was reconsidered: we speculated that different black hole properties (spin and magnetic field at its horizon) could determine the observed spread in jet luminosity.
Resumo:
This Thesis explores two novel and independent cosmological probes, Cosmic Chronometers (CCs) and Gravitational Waves (GWs), to measure the expansion history of the Universe. CCs provide direct and cosmology-independent measurements of the Hubble parameter H(z) up to z∼2. In parallel, GWs provide a direct measurement of the luminosity distance without requiring additional calibration, thus yielding a direct measurement of the Hubble constant H0=H(z=0). This Thesis extends the methodologies of both of these probes to maximize their scientific yield. This is achieved by accounting for the interplay of cosmological and astrophysical parameters to derive them jointly, study possible degeneracies, and eventually minimize potential systematic effects. As a legacy value, this work also provides interesting insights into galaxy evolution and compact binary population properties. The first part presents a detailed study of intermediate-redshift passive galaxies as CCs, with a focus on the selection process and the study of their stellar population properties using specific spectral features. From their differential aging, we derive a new measurement of the Hubble parameter H(z) and thoroughly assess potential systematics. In the second part, we develop a novel methodology and pipeline to obtain joint cosmological and astrophysical population constraints using GWs in combination with galaxy catalogs. This is applied to GW170817 to obtain a measurement of H0. We then perform realistic forecasts to predict joint cosmological and astrophysical constraints from black hole binary mergers for upcoming gravitational wave observatories and galaxy surveys. Using these two probes we provide an independent reconstruction of H(z) with direct measurements of H0 from GWs and H(z) up to z∼2 from CCs and demonstrate that they can be powerful independent probes to unveil the expansion history of the Universe.
Resumo:
Galaxy clusters and groups are the most massive bounded structures and the knots of the large-scale structure of the Universe. These structures reside in dark matter haloes, hosting tens to hundreds of galaxies and they are filled with hot and rarefied gas. Radio Galaxies are a peculiar class of galaxies with a luminosity in the radio band up to 10^46 erg/s between 10 MHz and 100 GHz. These galaxies are a subclass of AGN in which there is accretion on the Super Massive Black Hole. The accretion generates jets of relativistic particles and magnetic fields which lose energy through synchrotron radiation, best observable at radio frequencies. The study of the spectral ageing of the AGN plasma is fundamental to understand its evolution, interaction with the environment and to constrain the AGN duty cycle. n this thesis, we have investigated the duty cycle of the nearby remnant radio galaxy NGC 6086, located in the centre of the galaxy group Abell 2162. We have made major steps forward thanks to the new high-sensitivity interferometers in the low-frequency radio band. We have detected for the first time three filaments of emission and a second couple of lobes. We have performed an integrated and resolved analysis on the previously known inner lobes, the new filaments and the older outer lobes. We have performed an age estimate of the two pairs of lobes to give constraints on the duty cycle of the source and an estimate of its active time.
Resumo:
A recent integral-field spectroscopic (IFS) survey, the MASSIVE survey (Ma et al. 2014), observed the 116 most massive (MK < −25.3 mag, stellar mass M∗ > 10^11.6 M⊙) early-type galaxies (ETGs) within 108 Mpc, out to radii as large as 40 kpc, that correspond to ∼ 2 − 3 effective radii (Re). One of the major findings of the MASSIVE survey is that the galaxy sample is split nearly equally among three groups showing three different velocity dispersion profiles σ(R) outer of a radius ∼ 5 kpc (falling, flat and rising with radius). The purpose of this thesis is to model the kinematic profiles of six ETGs included in the MASSIVE survey and representative of the three observed σ(R) shapes, with the aim of investigating their dynamical structure. Models for the chosen galaxies are built using the numerical code JASMINE (Posacki, Pellegrini, and Ciotti 2013). The code produces models of axisymmetric galaxies, based on the solution of the Jeans equations for a multicomponent gravitational potential (supermassive black hole, stars and dark matter halo). With the aim of having a good agreement between the kinematics obtained from the Jeans equations, and the observed σ and rotation velocity V of MASSIVE (Veale et al. 2016, 2018), I derived constraints on the dark matter distribution and orbital anisotropy. This work suggests a trend of the dark matter amount and distribution with the shape of the velocity dispersion profiles in the outer regions: the models of galaxies with flat or rising velocity dispersion profiles show higher dark matter fractions fDM both within 1 Re and 5 Re. Orbital anisotropy alone cannot account for the different observed trends of σ(R) and has a minor effect compared to variations of the mass profile. Galaxies with similar stellar mass M∗ that show different velocity dispersion profiles (from falling to rising) are successfully modelled with a variation of the halo mass Mh.
Resumo:
Seyfert galaxies are the closest active galactic nuclei. As such, we can use
them to test the physical properties of the entire class of objects. To investigate
their general properties, I took advantage of different methods of data analysis. In
particular I used three different samples of objects, that, despite frequent overlaps,
have been chosen to best tackle different topics: the heterogeneous BeppoS AX
sample was thought to be optimized to test the average hard X-ray (E above 10 keV)
properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to
compare the properties of low-luminosity sources to the ones of higher luminosity
and, thus, it was also used to test the emission mechanism models; finally, the
XMM–Newton sample was extracted from the X-CfA sample so as to ensure a
truly unbiased and well defined sample of objects to define the average properties
of Seyfert galaxies.
Taking advantage of the broad-band coverage of the BeppoS AX MECS and
PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (
Resumo:
Five-hundred ten meters of Cretaceous sediments were drilled north of the Walvis escarpment in Hole 530A during Leg 75. An immature stage of evolution for organic matter can be assigned to all the samples studied. Black shales are interbedded with red and green claystone in the bottom sedimentary unit, Unit 8, which is of Coniacian to late Albian age. The richest organic carbon contents and petroleum potentials occur in the black shales. Detrital organic matter is present throughout the various members of a sequence, mixed with largely oxidized organic matter in the gray and green claystone or marlstone members on both sides. Detrital organic matter also characterizes the black streaks observed in the claystones. Vertical discontinuities in organic matter distribution are assigned to slumping. Several types of black shales can be identified, according to their content of detrital organic matter, the more detrital black levels corresponding to the Albian-Cenomanian period. Cyclic variations of organic matter observed for a sequence can occur for a set of sequences and even for some consecutive sets of sequences. Climatic factors are proposed to account for the cyclic sedimentation and distribution of organic matter for every sequence that includes a black bed.