503 resultados para biomaterial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic perforations of the eardrum or tympanic membrane represent a significant source of morbidity worldwide. Myringoplasty is the operative repair of a perforated tympanic membrane and is a procedure commonly performed by otolaryngologists. Its purpose is to close the tympanic membrane, improve hearing and limit patient susceptibility to middle ear infections. The success rates of the different surgical techniques used to perform a myringoplasty, and the optimal graft materials to achieve complete closure and restore hearing, vary significantly in the literature. A number of autologous tissues, homografts and synthetic materials are described as graft options. With the advent and development of tissue engineering in the last decade, a number of biomaterials have been studied and attempts have been made to mimic biological functions with these materials. Fibroin, a core structural protein in silk from silkworms, has been widely studied with biomedical applications in mind. Several cell types, including keratinocytes, have grown on silk biomaterials, and scaffolds manufactured from silk have successfully been used in wound healing and for tissue engineering purposes. This review focuses on the current available grafts for myringoplasty and their limitations, and examines the biomechanical properties of silk, assessing the potential benefits of a silk fibroin scaffold as a novel device for use as a graft in myringoplasty surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X~ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35 % andlor with the small pore size of about 70 μ are close to those of human cancellous bones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biocompatible porous Ti-16Sn-4Nb alloys were synthesised in quest of a novel tissue engineering biomaterial for bone regeneration. The alloys were prepared from elemental powders via mechanical alloying followed by space-holder sintering. The effects of ball milling variables on the characteristics and mechanical properties of bulk and porous Ti-16Sn-4Nb alloy have been investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surgical treatment to repair chronic tympanic membrane perforations is myringoplasty. Although multiple autologous grafts, allografts, and synthetic graft materials have been used over the years, no single graft material is superior for repairing all perforation types. Recently, the remarkable properties of silk fibroin protein have been studied, with biomedical and tissue engineering applications in mind, across a number of medical and surgical disciplines. The present study examines the use of silk fibroin for its potential suitability as an alternative graft in myringoplasty surgery by investigating the growth and proliferation of human tympanic membrane keratinocytes on a silk fibroin scaffold in vitro. Light microscopy, immunofluorescent staining, and confocal imaging all reveal promising preliminary results. The biocompatibility, transparency, stability, high tensile strength, and biodegradability of fibroin make this biomaterial an attractive option to study for this utility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silk fibroin films are promising materials for a range of biomedical applications. To understand the effects of casting solvents on film properties, we used water (W), formic acid (FA), and trifluoroacetic acid (TFA) as solvents. We characterized molecular weight, secondary structure, mechanical properties, and degradation behavior of cast films. Significant degradation of fibroin was observed for TFA-based film compared to W and TA-based films when analyzed by SDS-PAGE. Fibroin degradation resulted in a significant reduction in tensile strength and modulus of TFA-based films. Compared to water, TFA-based films demonstrated lower water solubility (19.6% vs. 62.5% in 12 h) despite having only a marginal increase in their ß-sheet content (26.9% vs. 23.7%). On the other hand, FA-based films with 34.3% ß-sheet were virtually water insoluble. Following solubility treatment, ß-sheet content in FA-based films increased to 50.9%. On exposure to protease XIV, water-annealed FA-based films lost 74% mass in 22 days compared to only 30% mass loss by ethanol annealed FA films. This study demonstrated that a small variation in the ß-sheet percentage and random coil conformations resulted in a significant change in the rates of enzymatic degradation without alteration to their tensile properties. The film surface roughness changed with the extent of enzymatic hydrolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigated the microstructures and compressive properties of hot-rolled Mg-Zr-Ca alloys for biomedical applications. The microstructures of the Mg-Zr-Ca alloys were examined by X-ray diffraction analysis and optical microscopy, and the compressive properties were determined from compressive tests. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys with 1% Ca are composed of one single α phase and those alloys with 2% Ca consist of both Mg2Ca and α phase. The hot-rolled Mg-Zr-Ca alloys exhibit typical elongated microstructures with obvious fibrous stripe, and have much higher compressive strength and lower compressive modulus than pure Mg. All the studied alloys have much higher compressive yield strength than the human bone (90~140 MPa) and comparable modulus with the human bone, suggesting that they have a great potential to be good candidates for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The incorporation of a high percentage of targeting molecules into drug delivery system is one of the important methods for improving efficacy of targeting therapeutic drugs to cancer cells. PLGA-based drug delivery carriers with folic acid (FA) as targeting molecule have a low targeting efficiency due to a low FA conjugation ratio. In this work, we fabricated a FA-conjugated PLGA system using a crosslinker 1, 3-diaminopropane and have achieved a high conjugation ratio of 46.7% (mol/mol). The as-prepared PLGA-based biomaterial was used to encapsulate therapeutic drug 5-fluorouracil (5-FU) into nanoparticles. In the in vitro experiments, an IC50 of 5.69 µg/mL has been achieved for 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles on HT-29 cancer cells and is significantly lower than that of 5-FU and 5-FU loaded PLGA nanoparticles which only have an IC50 of 22.9 and 14.17 µg/mL, respectively. The fluorescent microscopy images showed that nanoparticles with FA are largely taken up by HT-29 cancer cells and the targeting nanoparticles have more affinity to cancer cells than the pure drugs and untreated nanoparticles. Therefore, the 1, 3-diaminopropane can facilitate the conjugation of FA to PLGA to form a novel polymer and 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles can be a highly efficient system for specific delivery of drugs to cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regenerated Bombyx mori (B. mori) silk fibroin is a type of widely used biomaterial. The β-sheet structure of it after methanol treatment provides water-insolubility and mechanical stability while on the other side leads to a hydrophobic surface which is less preferred by biological systems. In this work we prepare a novel type of nanoconfined silk fibroin film with a thickness below 100 nm. The film has a flat while hydrophobic surface because of its β-sheet structure due to the z-direction confinement during formation. Different types of lipid monolayers, DOPC, DPPC and MO, are assembled on the silk film surface. The lipid coating, especially the DPPC membrane, provides a much smoother and more hydrophilic surface due to the gel phase tails of the lipids, in comparison with the DOPC and MO ones which are in a liquid phase and have a much stronger interfacial association between silk film surface and lipid tails. Such a lipid coating preserves the biocompatibility and cellular affinity of the silk film which promises potential applications as surface coatings for materials for biological use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ti and Ti-based alloys have unique properties such as high strength, low density and excellent corrosion resistance. These properties are essential for the manufacture of lightweight and high strength components for biomedical applications. In this paper, Ti properties such as metallurgy, mechanical properties, surface modification, corrosion resistance, biocompatibility and osseointegration in biomedical applications have been discussed. This paper also analyses the advantages and disadvantages of various Ti manufacturing processes for biomedical applications such as casting, powder metallurgy, cold and hot working, machining, laser engineering net shaping (LEN), superplastic forming, forging and ring rolling. The contributions of this research are twofold, firstly scrutinizing the behaviour of Ti and Ti-based alloys in-vivo and in-vitro experiments in biomedical applications to determine the factors leading to failure, and secondly strategies to achieve desired properties essential to improving the quality of patient outcomes after receiving surgical implants. Future research will be directed toward manufacturing of Ti for medical applications by improving the production process, for example using optimal design approaches in additive manufacturing and investigating alloys containing other materials in order to obtain better medical and mechanical characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications are the nanostructured scaffolds formed by epitope containing minimalist self-assembled peptides (SAPs), as they are bioactive on a cellular length scale, whilst presenting as an easily handled hydrogel. Here, we show that the assembly process distributes an anti-inflammatory polysaccharide, fuccoidan, localised to the nanofibers to function as an anti-inflammatory biomaterial for cancer therapy. We show that it supports healthy cells, whilst inducing apoptosis in cancerous endothelial cells, as demonstrated by the downregulation of the proinflammatory gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications as local epithelial cancer immunotherapy and drug delivery vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cimentos ósseos são materiais desenvolvidos há aproximadamente uma década para aplicações biomédicas. Um cimento deste tipo pode ser preparado misturando um sal de fosfato de cálcio com uma solução aquosa para que se forme uma pasta que possa reagir à temperatura corporal dando lugar a um precipitado que contenha hidroxiapatita [Ca10(PO4)6(OH)2]. A similaridade química e morfológica entre este biomaterial e a parte mineral dos tecidos ósseos permite a osteocondução, sendo o cimento substituído por tecido ósseo novo com o tempo e com a vantagem de não desencadear rejeição. Estes cimentos são usados principalmente para as operações de preenchimento ósseo, que requer operações cirúrgicas extremamente invasivas. O desafio atual é colocar este biomaterial no local de enxerto pelo método menos agressivo possível. A inovação consiste em formular composição de cimento ósseo injetável pela incorporação de aditivos. No entanto, propriedades como reduzido tempo de cura, limitada dissolução em meio líquido e resistência mecânica adequada ao local do enxerto devem ser preservadas. Neste estudo, foram abordados oito diferentes aditivos que foram incorporados ao fosfato tricálcico [Ca3(PO4)2] sintetizado, juntamente com a solução do acelerador de cura (2,5%massa de Na2HPO4 dissolvido em água destilada): CMC (carboximetilcelulose), polímero de AGAR (polissacarídeo de algas vermelhas), alginato de sódio, quitosana (fibra natural derivada da quitina), pirofosfato de sódio, lignosulfonato de sódio (polissacarídeo de algas marrons), glicerina e ácido láctico nas concentrações 0,4%; 0,8%; 1,6%; 3,2%; 6,4% em massa. Os resultados demonstraram que foi possível obter composições de cimento de fosfato de cálcio injetáveis para uso biomédico. Constatou-se uma relação de proporcionalidade direta entre a injetabilidade do cimento e tempo de injeção, sendo a injetabilidade dependente do comportamento reológico das pastas. Todas formulações testadas seguiram a mesma tendência de redução da resistência mecânica à compressão e aumento da porosidade com o aumento da quantidade de aditivo incorporado. Verificou-se que as formulações com 1,6% de carboxi-metil-celulose, 1,6% de AGAR e 0,8% de alginato de sódio, permitiram a obtenção de uma viscosidade suficiente para uma boa homogeneização e injeção, apresentando ao final da cura resistência mecânica à compressão semelhante ao do osso esponjoso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.