998 resultados para biological N fixation
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Dinoflagellates exist in symbiosis with a number of marine invertebrates including giant clams, which are the largest of these symbiotic organisms. The dinoflagellates (Symbiodinium sp.) live intercellularly within tubules in the mantle of the host clam. The transport of inorganic carbon (Ci) from seawater to Symbiodinium (=zooxanthellae) is an essential function of hosts that derive the majority of their respiratory energy from the photosynthate exported by the zooxanthellae. Immunolocalisation studies show that the host has adapted its physiology to acquire, rather than remove CO2, from the haemolymph and clam tissues. Two carbonic anhydrase (CA) isoforms (32 and 70 kDa) play an essential part in this process. These have been localised to the mantle and gill tissues where they catalyse the interconversion of HCO3- to CO2, which then diffuses into the host tissues. The zooxanthellae exhibit a number of strategies to maximise Ci acquisition and utilisation. This is necessary as they express a form II Rubisco that has poor discrimination between CO2 and O-2. Evidence is presented for a carbon concentrating mechanism (CCM) to overcome. this disadvantage. The CCM incorporates the presence of a light-activated CA activity, a capacity to take up both HCO3- and CO2, an ability to accumulate an elevated concentration of Ci within the algal cell, and localisation of Rubisco to the pyrenoid. These algae also express both external and intracellular CAs, with the intracellular isoforms being localised to the thylakoid lumen and pyrenoid. These results have been incorporated into a model that explains the transport of Ci from seawater through the clam to the zooxanthellae.
Resumo:
alpha-Conotoxin AuIB and a disulfide bond variant of AuIB have been synthesized to determine the role of disulfide bond connectivity on structure and activity. Both of these peptides contain the 15 amino acid sequence GCCSYPPCFATNPDC, with the globular (native) isomer having the disulfide connectivity Cys(2-8 and 3-15) and the ribbon isomer having the disulfide connectivity Cys(2-15 and 3-8). The solution structures of the peptides were determined by NAIR spectroscopy, and their ability to block the nicotinic acetylcholine receptors on dissociated neurons of the rat parasympathetic ganglia was examined. The ribbon disulfide isomer, although having a less well defined structure, is surprisingly found to have approximately 10 times greater potency than the native peptide. To our knowledge this is the first demonstration of a non-native disulfide bond isomer of a conotoxin exhibiting greater biological activity than the native isomer.
Resumo:
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N-2-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6parts per thousand), AM species had mostly intermediate delta(15)N values (average +0.6parts per thousand), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1parts per thousand). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2parts per thousand) and non-mycorrhizal (average +0.8 and +0.3parts per thousand) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N-2 fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4parts per thousand). Soil nitrification and plant NO3- use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO3- using taxa associated with NO3- rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar N-15 natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in N-15, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the N-15-enriched delta(15)N of African ECM species represent an anomaly.
Resumo:
Background: There is ample evidence of important symptomatic efficacy of tumour necrosis factor alpha (TNFalpha) inhibition in ankylosing spondylitis (AS). Moreover, studies suggest that anti-TNF could be considered as the first disease controlling antirheumatic treatment (DC-ART) for AS. Objective: To determine precisely which patients with AS are most likely to benefit from anti-TNFalpha treatment because of the cost and possible long term side effects of such treatment. Methods: Assessment in Ankylosing Spondylitis (ASAS) members were asked to use a Delphi technique to name the characteristics of patients with AS for whom they would start DC-ART, in three different clinical presentations (isolated axial involvement, peripheral arthritis, enthesitis). Results: Among the 62 invited ASAS members, more than 50% actively participated in the four phases of definition according to the Delphi technique. For each of the three clinical presentations, a combination of five to six domains was proposed, with an evaluation instrument and a cut off point defining a minimum level of activity for each domain. Conclusion: This study provides a profile for a patient with AS for considering initiation of biological agents that reflects the opinion of the ASAS members, using a Delphi exercise. Further studies are required to assess their relevance and their consistency with clinical practice.
Resumo:
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.
Resumo:
Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was
Resumo:
Three pathological fractures occurred secondary to osteolytic lesions of multiple myeloma. Two long bone fractures were each stabilised using interlocking nail fixation augmented with polymethyl meth acral ate bone cement. One vertebral fracture was stabilised using Steinmann pins and PMMA. Successful stabilisation, rapid return to function and improvement in quality of life occurred in all fractures. The patient survived approximately eight months on concurrent chemotherapy.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.
Resumo:
A survey of Monomachidae species was carried out in anarea of Atlantic rain forest of the Biological Reserve of Duas Bocas, Espírito Santo State, Brazil between September, 1996 and August, 1997. Two species of Mollomachus Klug, 1841, M. fuscator Perty, 1833 and M. eurycephalus Schletterer, 1890 were collected from May to September. Both species are typical of winter time and showed the same parttern of seasonality.
Resumo:
Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.
Resumo:
The inoculation with plant growth-promoting bacteria can be a technological approach useful for increasing the production of maize. The objective of this study was to evaluate the initial performance of maize in response to application of doses of NPK combined with the inoculation of the diazotrophic bacteria Herbaspirillum seropedicae in an greenhouse experiment. The experiment consisted of six fertilizer levels: 0, 25, 50, 75, 100 and 200% of the recommended dose of NPK applied to maize inoculated and non-inoculated with H. seropedicae. At 30 days after the treatment application, the growth characteristics and nutritional status of the plants were evaluated. Plant development was influenced by fertilization, but it was enhanced by combination with the bacteria, which resulted in significant increases in the dry mass of shoots (7%) and leaf area (9%) when compared with non-inoculated plants. The results showed increases in the concentration of N (11%), P (30%) and K (17%) of maize plants in response to bacterial inoculation together with NPK compared with plants that were applied fertilize only. The greater consistency and stability response of the host plant to bacterization in the presence of chemical fertilizer indicate a promissory biotechnological approach for improving the initial growth and adaptation of maize to the cultivation environment.
Resumo:
ABSTRACT Pathogenic fungi cause skin darkening and peach quality depreciation in post harvest. Therefore, alternative techniques to chemical treatment are necessary in order to reduce risks to human health. The aim of this study was to evaluate the effect of the application of Trichoderma harzianum in association with different fungicides applied before harvest to 'Eldorado' peaches for brown rot control and other quality parameters during storage. The treatments consisted of five preharvest fungicide applications (control, captan, iprodione, iminoctadine and tebuconazole) associated with postharvest application of T. harzianum, after cold storage (with and without application), in three evaluation times (zero, two and four days at 20 °C), resulting in a 5x2x3 factorial design. The application of T. harzianum only brought benefits to the control of brown rot when combined with the fungicide captan, at zero day shelf life. After two days, there was a greater skin darkening in peaches treated with T. harzianum compared with peaches without the treatment, except for peaches treated with the fungicide iprodione and T. harzianum The application of T. harzianum during postharvest showed no benefits for the control of brown rot, however, the association with fungicides reduced the incidence of Rhizopus stolonifer during the shelf life.
Resumo:
ABSTRACT The alternative technique of co-inoculation or mixed inoculation with symbiotic and non-symbiotic bacteria has been studied in leguminous plants. However, there are few field studies with common beans and under the influence of the amount of irrigated water. Thus, the objective of this study was to evaluate the efficiency of inoculation and co-inoculation of common beans with Rhizobium tropici and Azospirillum brasilense under two irrigation depths. The experiment was carried out in the winter of 2012 and 2013, in Selvíria, state of Mato Grosso do Sul. The experimental design was composed of randomized blocks in split-plot scheme with two irrigation depths in the plots (recommended for common beans and 75% of the recommended) and five forms of nitrogen (N) supply in the split-plots (control non-inoculated with 40 kg ha- 1 of N in topdressing, 80 kg ha- 1 of N in topdressing, A. brasilense inoculation with 40 kg ha-1 of N in topdressing, R. tropici inoculation with 40 kg ha-1 of N in topdressing, and co-inoculation of A. brasilense and R. tropici with 40 kg ha- 1 of N in topdressing) with four repetitions. Co-inoculation increased nodulation in the second year of cultivation. None of the evaluated treatments increased the grain yield in relation to non-inoculated control with 40 kg ha-1 of nitrogen in topdressing, which presented average yield of 2,200 kg ha-1. The use of 75% of the recommended irrigation depth provides similar grain yield to the recommended irrigation depth in common beans cropped in winter.