818 resultados para big data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acoustic recordings of the environment are an important aid to ecologists monitoring biodiversity and environmental health. However, rapid advances in recording technology, storage and computing make it possible to accumulate thousands of hours of recordings, of which, ecologists can only listen to a small fraction. The big-data challenge addressed in this paper is to visualize the content of long-duration audio recordings on multiple scales, from hours, days, months to years. The visualization should facilitate navigation and yield ecologically meaningful information. Our approach is to extract (at one minute resolution) acoustic indices which reflect content of ecological interest. An acoustic index is a statistic that summarizes some aspect of the distribution of acoustic energy in a recording. We combine indices to produce false-color images that reveal acoustic content and facilitate navigation through recordings that are months or even years in duration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This tutorial primarily focuses on the technical challenges surrounding the design and implementation of Accountable-eHealth (AeH) systems. The potential benefits of shared eHealth records systems are promising for the future of improved healthcare; however, their uptake is hindered by concerns over the privacy and security of patient information. In the current eHealth environment, there are competing requirements between healthcare consumers' (i.e. patients) requirements and healthcare professionals' requirements. While consumers want control over their information, healthcare professionals want access to as much information as required in order to make well informed decisions. This conflict is evident in the review of Australia's PCEHR system. Accountable-eHealth systems aim to balance these concerns by implementing Information Accountability (IA) mechanisms. AeH systems create an eHealth environment where health information is available to the right person at the right time without rigid barriers whilst empowering the consumers with information control and transparency, thus, enabling the creation of shared eHealth records that can be useful to both patients and HCPs. In this half-day tutorial, we will discuss and describe the technical challenges surrounding the implementation of AeH systems and the solutions we have devised. A prototype AeH system will be used to demonstrate the functionality of AeH systems, and illustrate some of the proposed solutions. The topics that will be covered include: designing for usability in AeH systems, the privacy and security of audit mechanisms, providing for diversity of users, the scalability of AeH systems, and finally the challenges of enabling research and Big Data Analytics on shared eHealth Records while ensuring accountability and privacy are maintained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Citizen science projects have demonstrated the advantages of people with limited relevant prior knowledge participating in research. However, there is a difference between engaging the general public in a scientific project and entering an established expert community to conduct research. This paper describes our ongoing acoustic biodiversity monitoring collaborations with the bird watching community. We report on findings gathered over six years from participation in bird walks, observing conservation efforts, and records of personal activities of experienced birders. We offer an empirical study into extending existing protocols through in-context collaborative design involving scientists and domain experts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed computation and storage have been widely used for processing of big data sets. For many big data problems, with the size of data growing rapidly, the distribution of computing tasks and related data can affect the performance of the computing system greatly. In this paper, a distributed computing framework is presented for high performance computing of All-to-All Comparison Problems. A data distribution strategy is embedded in the framework for reduced storage space and balanced computing load. Experiments are conducted to demonstrate the effectiveness of the developed approach. They have shown that about 88% of the ideal performance capacity have be achieved in multiple machines through using the approach presented in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clustering is an important technique in organising and categorising web scale documents. The main challenges faced in clustering the billions of documents available on the web are the processing power required and the sheer size of the datasets available. More importantly, it is nigh impossible to generate the labels for a general web document collection containing billions of documents and a vast taxonomy of topics. However, document clusters are most commonly evaluated by comparison to a ground truth set of labels for documents. This paper presents a clustering and labeling solution where the Wikipedia is clustered and hundreds of millions of web documents in ClueWeb12 are mapped on to those clusters. This solution is based on the assumption that the Wikipedia contains such a wide range of diverse topics that it represents a small scale web. We found that it was possible to perform the web scale document clustering and labeling process on one desktop computer under a couple of days for the Wikipedia clustering solution containing about 1000 clusters. It takes longer to execute a solution with finer granularity clusters such as 10,000 or 50,000. These results were evaluated using a set of external data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Building on hashtag datasets gathered since January 2011, this paper will compare patterns of Twitter usage during the popular revolution in Egypt and the civil war in Libya. Using custom-made tools for processing ‘big data’ (boyd & Crawford, 2011), we will examine the volume of tweets sent by English-, Arabic-, and mixed-language Twitter users over time, and examine the networks of interaction (variously through @replying, retweeting, or both) between these groups as they developed and shifted over the course of these uprisings. Examining @reply and retweet traffic, we will identify general patterns of information flow between the English- and Arabic-speaking sides of the Twittersphere, and highlight the roles played by key boundary riders connecting both language spheres. Further, we will examine the URLs shared in these hashtags by Twitter participants, to identify the most prominent overall information sources, examine differences in the information diet experienced by English- and Arabic-language users, and investigate whether there are any online sources whose URLs are transcending language boundaries more frequently than others.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Technology Acceptance Model (TAM) is a prominent framework that addresses the challenge of organisations to understand and promote the factors that lead to acceptance of new technologies. Nevertheless, our understanding of one of the model's key variables – social influence – remains limited. Drawing upon earlier studies that address the role of referent individuals to technology acceptance, this paper introduces the notion of ‘coalition’ as a social group that can affect the opinion of other members within an organisation. Our empirical study centres on an organisation that has recently decided to introduce Big Data into its formal operations. Through a unique empirical approach that analyses sentiments expressed by individuals about this technology on the organisation's online forum, we demonstrate the emergence of a central referent, and in turn the dynamics of a coalition that builds around this referent as the attitudes of individuals converge upon the Big Data issue. Our paper contributes to existing TAM frameworks by elaborating the social influence variable and providing a dynamic lens to the technology acceptance process. We concurrently offer a methodological tool for organisations to understand social dynamics that form about a newly introduced technology and accelerate its acceptance by employees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The requirement of distributed computing of all-to-all comparison (ATAC) problems in heterogeneous systems is increasingly important in various domains. Though Hadoop-based solutions are widely used, they are inefficient for the ATAC pattern, which is fundamentally different from the MapReduce pattern for which Hadoop is designed. They exhibit poor data locality and unbalanced allocation of comparison tasks, particularly in heterogeneous systems. The results in massive data movement at runtime and ineffective utilization of computing resources, affecting the overall computing performance significantly. To address these problems, a scalable and efficient data and task distribution strategy is presented in this paper for processing large-scale ATAC problems in heterogeneous systems. It not only saves storage space but also achieves load balancing and good data locality for all comparison tasks. Experiments of bioinformatics examples show that about 89\% of the ideal performance capacity of the multiple machines have be achieved through using the approach presented in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acoustic recordings play an increasingly important role in monitoring terrestrial environments. However, due to rapid advances in technology, ecologists are accumulating more audio than they can listen to. Our approach to this big-data challenge is to visualize the content of long-duration audio recordings by calculating acoustic indices. These are statistics which describe the temporal-spectral distribution of acoustic energy and reflect content of ecological interest. We combine spectral indices to produce false-color spectrogram images. These not only reveal acoustic content but also facilitate navigation. An additional analytic challenge is to find appropriate descriptors to summarize the content of 24-hour recordings, so that it becomes possible to monitor long-term changes in the acoustic environment at a single location and to compare the acoustic environments of different locations. We describe a 24-hour ‘acoustic-fingerprint’ which shows some preliminary promise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project proposes a framework that identifies high‐value disaster-based information from social media to facilitate key decision-making processes during natural disasters. At present it is very difficult to differentiate between information that has a high degree of disaster relevance and information that has a low degree of disaster relevance. By digitally harvesting and categorising social media conversation streams automatically, this framework identifies highly disaster-relevant information that can be used by emergency services for intelligence gathering and decision-making.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Social media analytics is a rapidly developing field of research at present: new, powerful ‘big data’ research methods draw on the Application Programming Interfaces (APIs) of social media platforms. Twitter has proven to be a particularly productive space for such methods development, initially due to the explicit support and encouragement of Twitter, Inc. However, because of the growing commercialisation of Twitter data, and the increasing API restrictions imposed by Twitter, Inc., researchers are now facing a considerably less welcoming environment, and are forced to find additional funding for paid data access, or to bend or break the rules of the Twitter API. This article considers the increasingly precarious nature of ‘big data’ Twitter research, and flags the potential consequences of this shift for academic scholarship.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making Sense of Mass Education provides an engaging and accessible analysis of traditional issues associated with mass education. The book challenges preconceptions about social class, gender and ethnicity discrimination; highlights the interplay between technology, media, popular culture and schooling; and inspects the relevance of ethics and philosophy in the modern classroom. This new edition has been comprehensively updated to provide current information regarding literature, statistics and legal policies, and significantly expands on the previous edition's structure of derailing traditional myths about education as a point of discussion. It also features two new chapters on Big Data and Globalisation and what they mean for the Australian classroom. Written for students, practising teachers and academics alike, Making Sense of Mass Education summarises the current educational landscape in Australia and looks at fundamental issues in society as they relate to education.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acoustic recordings play an increasingly important role in monitoring terrestrial and aquatic environments. However, rapid advances in technology make it possible to accumulate thousands of hours of recordings, more than ecologists can ever listen to. Our approach to this big-data challenge is to visualize the content of long-duration audio recordings on multiple scales, from minutes, hours, days to years. The visualization should facilitate navigation and yield ecologically meaningful information prior to listening to the audio. To construct images, we calculate acoustic indices, statistics that describe the distribution of acoustic energy and reflect content of ecological interest. We combine various indices to produce false-color spectrogram images that reveal acoustic content and facilitate navigation. The technical challenge we investigate in this work is how to navigate recordings that are days or even months in duration. We introduce a method of zooming through multiple temporal scales, analogous to Google Maps. However, the “landscape” to be navigated is not geographical and not therefore intrinsically visual, but rather a graphical representation of the underlying audio. We describe solutions to navigating spectrograms that range over three orders of magnitude of temporal scale. We make three sets of observations: 1. We determine that at least ten intermediate scale steps are required to zoom over three orders of magnitude of temporal scale; 2. We determine that three different visual representations are required to cover the range of temporal scales; 3. We present a solution to the problem of maintaining visual continuity when stepping between different visual representations. Finally, we demonstrate the utility of the approach with four case studies.