934 resultados para avenaciolide analogues
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This thesis details the design, development and execution of innovative methodology in the total synthesis of the terpene-derived marine natural product, furospongolide. It also outlines the synthetic routes used to prepare a novel range of furanolipids derivatives and subsequent evaluation of their potential as antitumour agents. The first chapter is a review of the literature describing efforts undertaken towards the synthesis of biologically active furanosesterterpenoid marine natural products. A brief discussion on the sources and biological activity exhibited by furan natural products is also provided. In addition, a concise account of the role of hypoxia in cancer, and the increasing interest in HIF-1 inhibition as a target for chemotherapeutics is examined. The second chapter discusses the concise synthesis of the marine HIF-1 inhibitor furospongolide, which was achieved in five linear steps from (E,E)-farnesyl acetate. The synthetic strategy features a selective oxidation reaction, a Schlosser sp3-sp3 cross-coupling, a Wittig cross-coupling and an elaborate one-pot selective reduction, lactonisation and isomerization reaction to install the butenolide ring. The structure-activity relationship of furospongolide was also investigated. This involved the design and synthesis of a library of structurally modified analogues sharing the same C1-C13 subunit. This was achieved by exploiting the brevity and high level of convergence of our synthetic route together with the readily amenable structure of our target molecule. Exploiting the Schlosser cross-coupling allowed for replacement of furan with other heterocycles in the preparation of various furanolipid and thiophenolipid derivatives. The employment of reductive amination and Wittig chemistry further added to our novel library of structural derivatives. The third chapter discusses the results obtained from the NCI from biological evaluation From a collection of 28 novel compounds evaluated against the NCI-60 cancer cell array, six drug candidates were successfully selected for further biological evaluation on the basis of antitumour activity. COMPARE analysis revealed a strong correlation between some of our design analogues and the blockbuster anticancer agent tamoxifen, further supporting the potential of furanolipids in the treatment of breast cancer. The fourth chapter, details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.
Resumo:
Histone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and
have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural
product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that
has been shown to possess high differential cytotoxicity towards cancer cells along with excellent
HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and
pharmacokinetic properties of largazole.
In attempts to make these improvements and furnish a more efficient biochemical probe
as well as a potential therapeutic, several largazole analogues have been designed, synthesized,
and tested for their biological activity. Three different types of analogues were prepared. First,
different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential
HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide
variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC
inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a
different prodrug strategy to modulate the pharmacokinetic properties of largazole.
Through these analogues it was shown that C2 position can be modified significantly
without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While
the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol
can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of
a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying
functional responses in vitro and in vivo.
v
Largazole is already an impressive HDAC inhibitor that shows incredible promise.
However, in order to further develop this natural product into an anti-cancer therapeutic as well as
a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity
are required. Through these studies we plan on building upon existing structure–activity
relationships to further our understanding of largazole’s mechanism of inhibition so that we may
improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that
may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of
biochemical systems.
Resumo:
The primary focus of this thesis was the development of a novel chiral tether that could be used to control axial chirality around a newly formed aryl-aryl bond, and the extension of this methodology to the model synthesis of gomisin M1. In chapter 1, a review detailing the use of chiral tethers in the synthesis of atropisomers is discussed. The use of a variety of chiral molecules including 1,2-diols, 1,3-diols and other diol-based tethers, as well as amine-based and miscellaneous tethers are detailed. In chapter 2, the rationale behind the design of our novel molecular tethers, along with the subsequent synthesis of three chiral 1,3-diol-based tethers, is outlined. The method by which the enantiopurity of these diols was determined is also reviewed. This chapter also includes the attempted Mitsunobu and intramolecular couplings in the model synthesis of BINOL. Chapter 3 discusses the synthesis of suitable aryl halide substrates, and their employment in the attempted tether-controlled asymmetric model synthesis of gomisin M1. A comprehensive investigation into the attempted intramolecular biaryl coupling of these tethered substrates is also included. The non-stereoselective model synthesis of gomisin M1 is outlined in chapter 4. The installation of the desired biaryl linkage and the subsequent attempted intramolecular McMurry couplings are discussed. The impact of different protecting groups in the molecule on the intramolecular McMurry reaction is also outlined. Chapter 5 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
Muscarine was identified as an active principle of the poisonous mushroom Amanita muscaria over 170 years ago and has been identified as an agonist of acetylcholine. The synthesis of all stereoisomers of muscarine have been accomplished at this stage by chemical methods and the biological activity of these compounds tested. A number of synthetic routes to enantiomerically pure muscarine and its analogues have been published. In this work, we are focussed on the use of a novel biotransformation strategy to access these compounds. Asymmetric synthesis involves targeting a synthetic pathway leading to one enantiomer of a compound and biocatalysis is one strategy used in asymmetric synthesis. Chapter 1 consists of a review of the relevant literature pertaining to the synthesis and stereoselective transformations of 3-hydroxytetrahydrofuranss. A review of synthetic routes to these compounds is presented, with a particular focus on routes to the natural product muscarine and its analogues. Chapter 2 discusses the preparative routes to the 3-hydroxytetrahydrofurans via 3(2H)- furanones. Steps amongst which include Rh(II) mediate cyclisation and kinetic resolution via baker’s yeast mediated carbonyl reduction, resulting in enantioenriched 3- hydroxytetrahydrofuran derivatives. Finally, application of this methodology to the preparation of all four enantiomers of an analogue of desmethylmuscarine and the synthesis of epimuscarine is described. Chapter 3 consists of a detailed experimental section outlining the synthetic procedures employed.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Gemcitabine is a highly potent chemotherapeutic nucleoside agent used in the treatment of several cancers and solid tumors. However, it is therapeutically limitated because of toxicity to normal cells and its rapid intracellular deamination by cytidine deaminase into the inactive uracil derivative. Modification at the 4-(N) position of gemcitabine's exocyclic amine to an -amide functionality is a well reported prodrug strategy which has been that confers a resistance to intracellular deamination while also altering pharmacokinetics of the parent drug. Coupling of gemcitabine to carboxylic acids with varying terminal moieties afforded the 4-N-alkanoylgemcitabines whereas reaction of 4-N-tosylgemcitabine with the corresponding alkyl amines gave the 4-N-alkylgemcitabines. The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues with a terminal hydroxyl group on the 4-N-alkanoyl or 4-N-alkyl chain were efficiently fluorinated either with diethylaminosulfur trifluoride or under conditions that are compatible with the synthetic protocols for 18F labeling, such as displacement of the corresponding mesylate with KF/Kryptofix 2.2.2. The 4-N-alkanoylgemcitabine analogues displayed potent cytostatic activities against murine and human tumor cell lines with 50% inhibitory concentration (IC50) values in the range of low nM, whereas cytotoxicity of the 4-N-alkylgemcitabine derivatives were in the low to modest µM range. The cytostatic activity of the 4-N-alkanoylgemcitabines was reduced by several orders of magnitude in the 2'-deoxycytidine kinase (dCK)-deficient CEM/dCK- cell line while the 4-N-alkylgemcitabines were only lowered by 2-5 times. None of the 4-N-modified gemcitabines were found to be substrates for cytosolic dCK, however all were found to inhibit DNA synthesis. As such, the 4-N-alkanoyl gemcitabine derivatives likely need to be converted to gemcitabine prior to achieving their significant cytostatic potential, whereas the 4-N-alkylgemcitabines reach their modest activity without "measurable" conversion to gemcitabine. Thus, the 4-N-alkylgemcitabines provide valuable insight on the metabolism of 4-N-modified gemcitabine prodrugs.
Resumo:
The synthesis and differential antiproliferative activity of monastrol (1a), oxo-monastrol (1b) and eight oxygenated derivatives 3a,b–6a,b on seven human cancer cell lines are described. For all evaluated cell lines, monastrol (1a) was shown to be more active than its oxo-analogue, except for HT-29 cell line, suggesting the importance of the sulfur atom for the antiproliferative activity. Monastrol (1a) and the thio-derivatives 3a, 4a and 6a displayed relevant antiproliferative properties with 3,4-methylenedioxy derivative 6a being approximately more than 30 times more potent than monastrol (1a) against colon cancer (HT-29) cell line.
Resumo:
Purpose: We have investigated the effect of melatonin and its analogues on rabbit corneal epithelial wound healing. Methods: New Zealand rabbits were anaesthetised and wounds were made by placing Whatman paper discs soaked in n-heptanol on the cornea. Melatonin and analogues (all 10 nmol) were instilled. Wound diameter was measured every 2 hours by means of fluorescein application with a Topcon SL-8Z slit lamp. Melatonin antagonists (all 10 nmol) were applied 2 hours before the application of the n-heptanol-soaked disc and then every 6 hours together with melatonin. To confirm the presence of MT2 receptors in corneal epithelial cells immunohistochemistry, Western blot and RT-PCR assays in native tissue and in rabbit corneal epithelial cells were performed. The tear components were extracted then processed by HPLC to quantify melatonin in tears. Results: Migration assays revealed that melatonin and particularly the treatment with the MT2 agonist IIK7, accelerated the rate of healing (p < 0.001). The application of the non-selective melatonin receptor antagonist luzindole and the MT2 antagonist DH97 (but not prazosin), prevented the effect of melatonin on wound healing (both p < 0.001). Immunohistochemistry, Western blot and RT-PCR assays showed the presence of MT2 melatonin receptor in corneal epithelial cells. In addition, we have identified melatonin in tears and determined its daily variations. Conclusions: These data suggest that MT2 receptors are implicated in the effect of melatonin on corneal wound healing regulating migration rate. This suggests the potential use of melatonin and its analogues to enhance epithelial wound healing in ocular surface disease.
Resumo:
Purpose: To synthesize a series of analogues of 1,3,4-oxadiazole and to evaluate their antibacterial activity. Methods: Ethyl piperidin-4-carboxylate (1) was mixed with 4-toluenesulfonyl chloride (2) in benignant conditions to yield ethyl 1-(4-toluenesulfonyl)piperidin-4-carboxylate (3) and then 1-(4- toluenesulfonyl)piperidin-4-carbohydrazide (4). Intermolecular cyclization of 4 into 2-mercapto-5-(1-(4- toluenesulfonyl) piperidin-4-yl)-1,3,4-oxadiazole (5) was obtained on reflux with CS2 in the presence of KOH. Molecule 5 was stirred with alkyl halides, 6a-i, in DMF in the presence of LiH to synthesize the final compounds, 7a-i. The structures of these molecules were elucidated by Fourier transform infra-red (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) and electron impact mass spectrometry (EI-MS). Antibacterial activity was evaluated against five bacterial strains, namely, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, with ciprofloxacin used as standard antibacterial agent. Results: Out of nine synthesized derivatives, compound 7a was the most active against three bacterial strains, S. typhi, E. coli and P. aeruginosa, with minimum inhibitory concentration (MIC) of 9.11 ± 0.40, 9.89 ± 0.45 and 9.14 ± 0.72 μM, respectively, compared with 7.45 ± 0.58, 7.16 ± 0.58 and 7.14 ± 0.18 μM, respectively, for the reference standard (ciprofloxacin). Similarly, compounds 7a - 7c showed relatively good antibacterial activity against B. subtilis strain while compound 7e - 7g revealed good results against S. typhi bacterial strain. Conclusion: The results indicate that S-substituted derivatives of the parent compound are more effective antibacterial agents than the parent compound, even with minor differences in substituents
Resumo:
Purpose: To study the structure-activity relationships of synthetic multifunctional sulfides through evaluation of lipoxygenase and anti-bacterial activities. Methods: S-substituted derivatives of the parent compound 5-(1-(4-chlorophenylsulfonyl) piperidin-3- yl)-1, 3, 4-oxadiazole-2-thiol were synthesized through reaction with different saturated and unsaturated alkyl halides in DMF medium, with NaH catalyst. Spectral characterization of each derivative was carried out with respect to IR, 1H - NMR, 13C - NMR and EI - MS. The lipoxygenase inhibitory and antibacterial activities of the derivatives were determined using standard procedures. Results: Compound 5e exhibited higher lipoxygenase inhibitory potential than the standard (Baicalein®), with % inhibition of 94.71 ± 0.45 and IC50 of 20.72 ± 0.34 μmoles/L. Compound 5b showed significant antibacterial potential against all the bacterial strains with % inhibition ranging from 62.04 ± 2.78, 69.49 ± 0.41, 63.38 ± 1.97 and 59.70 ± 3.70 to 78.32 ± 0.41, while MIC ranged from 8.18 ± 2.00, 10.60 ± 1.83, 10.84 ± 3.00, 9.81 ± 1.86 and 11.73 ± 5.00 μmoles/L for S. typhi, E. coli, P. aeruginosa, B. subtilis and S. aureus, respectively. Compounds 5d, 5e and 5g showed good antibacterial activity against S. typhi and B. subtilis bacterial strains. Conclusion: The results suggest that compound 5e bearing n-pentyl group is a potent lipoxygenase inhibitor, while compound 5b with n-propyl substitution is a strong antibacterial agent. In addition, compounds 5d, 5e and 5g bearing n-butyl, n-pentyl and n-octyl groups, respectively, are good antibacterial agents against S. typhi and B. subtilis.
Resumo:
The aim of this research is to improve the understanding of the factors that control the formation of karst porosity in hypogene settings and its associated patterns of void-conduit networks. Subsurface voids created by hypogene dissolution may span from few microns to decametric tubes providing interconnected conduit systems and forming highly anisotropic permeability domains in many reservoirs. Characterizing the spatial-morphological organization of hypogene karst is a challenging task that has dramatic implications for the applied industry, given that only partial data can be acquired from the subsurface by indirect techniques. Therefore, two outcropping cave analogues are examined: the Cavallone-Bove Cave in the Majella Massif (Italy), and the karst systems of the Salitre Formation (Brazil). In the latter, a peculiar example of hypogene speleogenesis associated with silicification has been studied, providing an analogue of many karstified reservoirs hosted in cherts or cherty-carbonates within mixed sedimentary sequences. The first part of the thesis is focused on the relationships between fracture patterns and flow pathways in deformed units in: 1) a fold-and-thrust setting (Majella Massif); 2) a cratonic block (Brazil). These settings represent potential playgrounds for the migration and accumulation of geofluids, where hypogene conduits may affect flow pathways, fluid storage, and reservoir properties. The results indicate that localized deformation producing cross-formational fracture zones associated with anticline hinges or fault damage zones is critical for hypogene fluid migration and karstification. The second part of the thesis deals with the multidisciplinary study of hydrothermal silicification and hypogene dissolution in Calixto Cave (Brazil). Petrophysical analyses and a geochemical characterization of silica deposits are used to unravel the spatial-morphological organization of the conduit system and its speleogenesis. The novel results obtained from this cave shed new light on the relationship between hydrothermal silicification, hypogene dissolution and the development of multistorey cave systems in layered carbonate-siliciclastic sequences.
Resumo:
Abstract The aim of this study was to evaluate three transfer techniques used to obtain working casts of implant-supported prostheses through the marginal misfit and strain induced to metallic framework. Thirty working casts were obtained from a metallic master cast, each one containing two implant analogues simulating a clinical situation of three-unit implant-supported fixed prostheses, according to the following transfer impression techniques: Group A, squared transfers splinted with dental floss and acrylic resin, sectioned and re-splinted; Group B, squared transfers splinted with dental floss and bis-acrylic resin; and Group N, squared transfers not splinted. A metallic framework was made for marginal misfit and strain measurements from the metallic master cast. The misfit between metallic framework and the working casts was evaluated with an optical microscope following the single-screw test protocol. In the same conditions, the strain was evaluated using strain gauges placed on the metallic framework. The data was submitted to one-way ANOVA followed by the Tukey's test (α=5%). For both marginal misfit and strain, there were statistically significant differences between Groups A and N (p<0.01) and Groups B and N (p<0.01), with greater values for the Group N. According to the Pearson's test, there was a positive correlation between the variables misfit and strain (r=0.5642). The results of this study showed that the impression techniques with splinted transfers promoted better accuracy than non-splinted one, regardless of the splinting material utilized.